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Abstract

We give a structure result for the positive radial solutions of the following
equation:
Apu+ K(r)ulu|/f =0

with some monotonicity assumptions on the positive function K (r). Here

r = |z|, x € R™; we consider the case when n > p > 1, and ¢ > p. =
n(p—1)

! \§7Ve continue the discussion started by Kawano et al. in [11], refining
the estimates on the asymptotic behavior of Ground States with slow
decay and we state the existence of S.G.S., giving also for them estimates
on the asymptotic behavior, both as » — 0 and as r — oo.

We make use of a Emden-Fowler transform which allow us to give a
geometrical interpretation to the functions used in [11] and related to the
Pohozaev identity. Moreover we manage to use techniques taken from
dynamical system theory, in particular the ones developed in [10] for the
problems obtained by substituting the ordinary Laplacian A for the p-
Laplacian A, in the preceding equations.
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1 Introduction

Let Apu = div(|DulP=2Du), p > 1, denote the degenerate p-Laplace operator.
The aim of this paper is to study the existence and the asymptotic behavior of
positive radial solutions of the following quasilinear elliptic equation:

Apu + K (|z])ulul”! =0 (1.1)

where K (|z]) is a radial function which we assume to be as regular as needed,
usually C2. In particular we focus our attention on the existence of radial
Ground States (G.S.), Singular Ground States (S.G.S) and crossing solutions
in a ball. By G.S. we mean a positive solution u(x) defined in the whole space
R™ such that lim|,| . u(]z[) = 0, and by a S.G.S. we mean a G.S. which is not
defined at the origin and satisfies lim;|_o u(|z[) = +o00. By crossing solution
we mean a solution u(x) such that u(z) > 0 if |z] < R and u(z) =0 if |z| = R,
therefore such a solution can also be regarded as a Dirichlet solution in a ball
of radius R.

We will use the term “singular solution” to refer only to a solution v(x) such
that lim ;o v(|z]) = 400,

We are only able to deal with radial solutions, so we shall consider the following
O.D.E.

-1
(u' o [P72) + = [P 4 K ()l = 0 1)

w0)=A>0 4'(0)=0

where |z| = r, n is the dimension of the space and “’” denotes derivation with
respect to r. A general assumption in this paper is that n > p and ¢ > p — 1.

We will denote with p* = n”—f; — 1 the Sobolev critical exponent and with
Dy = nglpi:;) another constant which plays a critical role in this context. We will

usually assume g > p,.

In recent years this equation has been studied by many authors: the situation
for the autonomous case is almost completely understood, see in particular the
survey given in [6].

The purpose of this paper is to refine the results obtained by Kawano et al.
in [11]. We combine some elements of that approach with others taken from
dynamical systems theory, in particular the techniques developed by Johnson,
Battelli, Pan and Yi in [1] and in [10], for the corresponding problem with the
usual Laplacian. We make use of a new transform of Fowler type, introduced
in [5], which enables us to give a geometrical interpretation, from the point of
view of dynamical system, to the function J(r) used in [11], closely related to
the Pohozaev identity.

Exploiting these techniques we are able to refine the estimates on the asymptotic
behavior of the solutions and to state the existence of S.G.S. Furthermore we
give a non existence result which allows us to classify all the possible S.G.S. In
particular we particular we complete the analysis of the problem of the existence
of S.G.S when ¢ > p, for the autonomous equation, presented in [6].



We are able to show that, under rather general assumptions, we can only have
two kind of behavior as r — 0 for positive solutions u(r): the regular, that is

0 < u(0) < oo, and the singular, that is u(r) ~ ra, if for example we assume
0 < K(0) < oco. Moreover we have only two kinds of behavior as r — oo for

n—p

positive solutions: fast decay, that is always u(r) ~ r~ =1, and slow decay, that
is u(r) ~ raprT if K (r) is strictly positive and bounded for r large.

With the notation u(r) ~ r~* as r — ¢ we mean that both the limits
limsup,._,, u(r)r® and liminf, . u(r)r® are positive and finite.

We recall now some classical definitions which will be useful in the following
sections. Given a system of the form

&= f(z,1)
and a solution z(t), the a-limit set of (t) is the set

A={P:3t, > —oco such that lim z(¢,) = P},

n—oo

while the w-limit set is the set

W ={P:3t, — +oo such that lim z(t,) = P}.

n—oo

One can show that, if 2(¢) is bounded on R, then those sets are compact. More-
over if the system is autonomous these sets are invariant for the flow generated
by the system. If the system is non-autonomous they are no longer invariant;
however we will see that they are still useful for the present purposes.

2 Autonomous problem

We begin by introducing a transform of Fowler type which establishes a bijective
relationship between the solutions of (1.2) and the ones of a two-dimensional
dynamical system, thus allowing us to reach a geometrical understanding of the
behavior of the solutions. In particular we define

x; = u(r)r™ g = o' (7)o (r)|P 2P r=ce' 51
G=al—q)  ¢(t)=K()=K(r) )= pt)e" 2
where
l
al:l—p%’ ﬁl:l_];ﬁ—ly ’leﬁl—(n—l)a pFlL—1

so that equation (1.2) can be written as the following dynamical system

=5 DG ian) e

where “ -7 denotes derivation with respect to t. We will rather often set [ = p*
and in this case we will leave unsaid the subscript [. Sometimes it will be useful
to set I = ¢ in order to have hy(t) = K(r). We point out that choosing p = 2
and g = p* our transformation coincides with the one used in [9].

“



2.1 Remark. [Regularity Hypothesis] It is important to observe that system
(2.2) is C* if and only if ¢ > 1 and 1 < p < 2.

If this hypothesis is not satisfied the dynamical system is not even Lipschitz
so that local uniqueness of the solutions near the x and y axis is not anymore
ensured, thus our use of the term “dynamical system” is not quite rigorous.

2.2 Remark. Note that

a+ym<0 < I>p" and o+ >0 << I<p’
and [ = p* gives a + v = 0.

Note also that if [ > p, we have 0 < a; < %.

Observe that ; increases when [ increases and lim; .o, ; = p.

We will see that for ¢ > p* we will obtain G.S. with decay rate ~ r~%a
therefore, for any given €, we can choose ¢ large enough in order to have G.S.
with decay rate slower than r~¢.

Moreover it will be possible to control the asymptotic behavior of functions
K(r) that tend to 0 as r — o0, by choosing the correct value of . But if we are
dealing with a K (r) = o(rP) we will always obtain h;(t) — 0 as t — oo. In this
case positive solution cannot tend to O.

2.8 Remark. The solutions u(r) of equation (1.2) corresponds to the trajectories
(z(t), y(t)) of system (2.2) having the origin as a-limit point. Moreover if u(r) >
0 then z(¢) > 0 and «/(r) > 0 implies y(t) > 0.

2.4 Remark. It is well known that w'(r) < 0 for r > 0 small, thus the trajectories
(x(t),y(t)) corresponding to u(r) lie in the 4" quadrant as t — —oo.

2.5 Remark. Crossing solutions u(r) correspond to trajectories of system (2.2)
departing from the origin and getting into the 4** quadrant, until they cross the
Y negative semiaxis.

2.6 Observation. Consider system (2.2), when h;(t) = h > 0 is a constant. Then
we have exactly 3 critical points: the origin O = (0,0), P = (P, P,) and —P
where P, > 0 and Py < 0.
Assume that the limit lim;, . hy(¢) is finite and positive, then the same state-
ment holds for system (3.3) with & > 0, which will be introduced later on.
Analogously we have exactly three critical points also for system (3.3) with
& < 0, when the limit lim; ./ (t) is finite and positive.

From now on we restrict our attention to the halfplane defined by x > 0,
since trajectories corresponding to positive u(r) have to stay there.

We define now two functions which were introduced in [11], which are closely
related to the Pohozaev identity. Let u(r) be a solution of (1.2), then:

- - -1 K(r) ,lu(s)s!
P,(r) = P () ()| (7) P2 4 P u'(r)|P + r" ;
(r) p (r)u’(r)[u’(r)] ) u'(r)] ) )

here P is defined in the domain of definition of u, and

T a(g+1) t a(g+1)s
J(r) = / dK(s) s s — / dh(s) e d
0

ds q+1 o ds  q+1

S.



The function J(r) is the one which plays a discriminating role in the analysis
derived in [11], even if we have rewritten it in a form which seems to us to be
simpler. Now we repeat one of the key observation of [11]: observe that for any
given u(r), regular solution of (1.2), we have

Py(r) = J(r)|u(r)]™! — /0 J(r)u(s)|4 (s)ds. (2.3)

moreover note that, for a singular solution v(r), we have

Py(r) = J(r)o(r)[** */ J(r)|o(s)|"' (s)ds — lim Py (r). (2.4)
0 r—
In our analysis we will also need the following function similar to J(r)

[T dK(s) se(at1) [ dh(s) ealatl)s
G(r).—/r I Q+1d8_/t pP—— s

especially to analyze positive solutions with fast decay. In fact we have:
P,(r)=— <G(7")v(7°)|q'H —/ G(s)|v(s)|qv’(s)ds> + lim P,(r). (2.5)
r T—00

2.7 Remark. Note that, if h(t) > 0 for any ¢ and the inequality is strict for some
t, we have that both J(r) and G(r) are positive for any r, while, if 2(t) < 0 for
any t and the inequality is strict for some ¢, we have that J(r) and G(r) are
negative.

2.8 Remark. Consider a solution u(r), recalling Remark (2.4) we have that if
J(r) < 0 for any r we have P,(r) < 0 for any r, while if J(r) > 0 we have
P,(r) > 0.

We introduce a function which will play a crucial role in the following anal-
ysis. Let us consider system (2.2); we define

Hl(xl(t)7yl(t)’t) =

n— -1 e x;]at! (26)
= Pu(et)e(al—i_%)t - P pxlyl + : P e =7 + hl<t)| {

g+1-

Observe that if we set [ = p* we obtain oy ++; = 0 and H(t) becomes an energy
function, in fact differentiating we get:

d d ‘.%p* atl

it (o (0 (1)) = by (0725

= : (2.7)

thus the monotonicity of h(t) implies the monotonicity of H(¢). Now we give a
lemma that describes the level sets of this function.

2.9 Lemma. Consider any T such that 0 < h(T) < oco. Then the equation
Hy(z,y;,T) = 0, restricted to the halfplane x > 0, defines a closed bounded



curve containing the origin and which is contained in the closed 4" quadrant.
The equation H;(z,y;,T) = —b < 0, where H(P(T),T) = =b*(T) < =b < 0,
defines a closed bounded curve in the halfplane x > 0. Finally, the equation
H(xzy,y;,T) = b > 0 defines a closed bounded curve in the whole plane which
contains the origin in its interior.

Now we give some information about the asymptotic behavior of the solu-
tions, both as r — 0 and as r — oo.

2.10 Lemma. Consider a solution v(r) of Eq. (1.2) defined and positive in a
right neighborhood of r = 0. Fiz | in order to have that lim;_,_ . hi(t) < oo.
Suppose that the corresponding trajectory of (2.2) admits the origin as o-limit
point, then we have that v(0) < oo.

Consider a solution u(r) of Eq. (1.2) defined and positive in a right neighborhood
of r = co. Fizl in order to have that limy—,_ o h;(t) < co. Suppose that the
corresponding trajectory of (2.2) admits the origin as w-limit point, then we

have that u(r) ~ 1~ 71 asr — o0.

Proof. The proof of Lemma (2.9) is completely analogous to the one of Lemma
(2.6) in [5]. The proof of Lemma (2.10) can be easily obtained reasoning as in
the proofs of Observation (5.4) and Observation (5.5) in [5], for the equation
with two growth term. O

We will see that the solutions of Eq. (1.2) can exhibit only two kind of
behavior as r — 0, that is the regular, just described, and the singular. They
correspond respectively to the case in which the trajectory has the origin as a-
limit point or when it is bounded and bounded away from the z axis, as t — oco.
Analogously we also have only two kinds of decay as r — oo: the slow one,
which depends on the asymptotic behavior of K (r) and on ¢, and the fast one

that is always ~ 75 1. Once again they correspond to trajectories bounded
and bounded away form the x axis or converging to the origin.

2.11 Proposition. Consider Eq. (1.2) and assume K(r) = const > 0 and

q = p*. Consider the corresponding autonomous system of the form (2.2) with
Il =q=p*. Then the following holds.

A All the trajectories corresponding to positive values H(x,y) = b > 0 rep-
resent periodic trajectories which cross the axis. They correspond to sin-
gular solutions u(r) of (1.2) with infinitely many positive mazima and
negative minima; moreover there exists a > 0 such that —ar~® < u(r) <
ar~—® Vr>a0.

B The trajectory corresponding to H(x,y) = 0 is homoclinic to the origin;
this means that all the solutions u(r) of (1.2) are monotone decreasing

G.S., with decay rate ~ rP T at 0o (fast decay).

C All the trajectories corresponding to some negative value H(x1,x2) = —b >
H(P) represent periodic trajectories which belong to the x > 0 halfplane.



They represent monotone decreasing S.G.S. u(r) of Eq. (1.2) with rate of

decay and growth ~ P respectively at oo and at 0.

D For the value H = H(P) we have one fized point P, which corresponds to

a monotone decreasing S.G.S of (1.2) of the form u(r) = Pyr™ 7 where
we recall that P, depends only on the value of K.

All the solutions u(r) reqular at the origin are G.S with fast decay, therefore no
crossing solutions can exist. Moreover no other S.G.S can exist but the ones
described.

2.12 Remark. The preceding proposition can be trivially generalized to the case
in which ¢ # p*, but h(t) = const > 0, that is K(r) = Ar~ 7 ® ~9 where
A > 0 is a constant.

Proof. To prove the claim is enough to observe that the system (2.2) correspond-
ing to Eq. (1.2) is autonomous, with these assumptions, and admits Hp- as a
first integral; then using Lemma (2.9) and Lemma (2.10) we get the thesis. O

2.18 Remark. Assume that the regularity hypothesis is satisfied. Then all the
solutions u(r) corresponding to the homoclinic trajectory are such that «(0) > 0
and v/ (0) = 0. Therefore no other solutions u(r) positive in a right neighborhood
of r = 0 can exist, but the ones described in the Proposition.

A priori we could find solution u(r) of (1.2), corresponding to trajectories of
(2.2) having the origin as a-limit point. In Observation (3.17) we show that, if
q< %7 this case can be excluded.

2.14 Observation. Suppose that the regularity hypothesis is satisfied and assume
that system (2.2) is autonomous. Then it admits periodic solutions if and only
if [ = p*.

Moreover if [ # p* and the regularity hypothesis is not satisfied, the periodic
trajectories if they exist, must have the origin in their interior or cross it.

Proof. This fact easily follows applying the Poincare-Bendixson criterion that
affirms that a necessary condition for the existence of periodic solutions in an
autonomous system of the form

(3)-(259) 25

df1(z,y) n dfa(z,y)
dx dy

If we remove the regularity hypothesis we can still apply the criterion to each
open quadrant. Observe that the flow is always rotating clockwise on the axes
and remember that on the axes and in the origin we lose local uniqueness of the
solutions and conclude. O

is that

=a+v7=0. (2.9)



2.15 Remark. Observe that the homoclinic and the other trajectories of system
(2.2) where hy(t) = const> 0, correspond to families of solutions, because the
system is autonomous, so it is invariant for translation in time. To be more
precise, if u(r) is a solution (regular or singular), us(r) = u(g)f% is a solution
as well. Therefore if we call w4 (r) the solution such that u(0) = A and «/(0) = 0,
then ua(r) = Auy (A7 r), where uy (r) is ug(r) where B = 1.

We recall that for the autonomous equation (1.2) with ¢ = p* and K(r) =1
is already known the exact expression

ua(r)=A [1 +D [(A"%Pr)rj%lH7 g

where D = (p—1)(n —p)np%l is a constant, see [6].

3 Non-Autonomous problem

We begin with a lemma concerning the phase portrait of the non autonomous
system (2.2).

3.1 Lemma. Consider any trajectory of the non autonomous system (2.2) pass-
ing through the 1% quadrant, which has not the origin as a-limit point. Then it
comes from the 2" quadrant and goes into the 4" quadrant after finite time.

o

Proof. Set | = p* and consider system (2.2). Consider a trajectory (Z(t),y(t))
belonging to the 1% quadrant for a certain ¢ = ¢; assume that it is bounded
away from the origin for t — —oo. We claim that there exists a t; < ¢ for
which (Z(¢), y(t)) crosses the y positive semiaxis. Suppose by contradiction that
Z(t) > 0 for any t > T where T' > —oo is the inf of the maximal interval of
continuation of (Z(t),y(t)). Suppose that (Z(t),y(t)) is unbounded as t — T,
then lim; - H(Z(t),y(t),t) = +oo. We recall that

d d ||t
ﬁH(x(t),y(t)j) = &h(t) P

v

Therefore, recalling that %(t) is finite we conclude that < H(Z(t),§i(t),t) < oo
for any t finite. Therefore we have T' = —oo. Now recalling that £%(t) > € >0
we conclude that (£(t), 3(t)) crosses the y axis after finite time since the distance
from the trajectory and the axis is finite.

Now we follow the trajectory forward in time. Suppose that it does not cross

v

the 2 axis, then we have %#(t) > e > 0 for any t > f and for some € > 0.

%ssume that the sup of the maximal interval of continuation iSuT . Suppose that
T < oo, then there exist A such that h(t) > A for any ¢t < T. We define the
function H4(z(t),y(t)) obtained setting h(t) = A in H(t):

—-Pp
p

n — 1 _p
Ha(z(t),y(t)) == xy+p7|y|p—1 + Alz|ot. (3.1)



Differentiating we get

d 1.
S Ha(z(®),y(t) = [A = h()]ale|*" "4,
thus HA(t) is decreasing along (X(t),(¢)). Since the level sets of H,4(t) are
bounded, we have that (Z(t),3(t)) is bounded, so it can be continued also for
t > T. Thus T' = oo; now observing that %gj(t) < —e < 0 for any t we have
that (Z(t),y(t)) must cross the z axis. O

Now we need to introduce a new transform in order to deal with an au-
tonomous system. Applying to Eq. (1.2) the change of variables (2.1) and
setting z; =t we obtain the following system:

z o 0 0 331 Vpe (1)
o =1 0 wm 0 yo |+ (g () (3.2)
Zl 0 0 0 2 1

where 1,,(s) = s|s|™ 2. We will also consider the system obtained setting

z = €& in order to investigate the behavior as t — —oo, setting & > 0, and as
t — o0, setting £ < O:

T a 0 0 ) VYp= (1)
o |=( 0 v 0 y |+ —hz)Ye(T) | (3.3)
3 0 0 ¢ 2 0

Now we give the definitions of three sets of system (2.2) for a generic value of
the parameter [:
Ut :={(x,y,2) | <0 y<0 and >0}
U™ ={(z,y,2) | <0 y<0 and <0}
c:={(z,y,2) | <0 y<0 and =0}
Sp=A(xny,2) | w1 <0 y <0 and H(x,y,2) =0}

3.2 Remark. We will sometimes focus our attention on the set S;({z = 0}
of system (3.3). Note that P,(r) < 0 for any r > 0 implies that, for the
corresponding trajectory, we have Hp-(zp-(t),yp+(t),t) < 0 for any ¢ and also
as t — £oo. Note also that P,(r) < 0 implies H;(z;(t), yi(t),t) < 0 for any ¢
finite, but letting ¢ — o0 we can only say that H;(t) < 0.

3.3 Theorem. Assume that J(r) <0 for any r > 0, but J(r) 0 and that

0< litminf h(t) < limsup h(t) < oo.
0 t—00

Then all the solutions u(r) of Eq. (1.2) are G.S. with decay of order ~ r~%*.
Moreover assume that h(t) is monotone for t large and that 0 < lim; o h(t) =
A < oo.

Then for each G.S. u(r) there exists a S.G.S. v(r) of the frozen Eq. (1.2) where
K(r) = Ar—2» " =9 sych that

limy— oo (u(r) — v(r))r*»* = 0.



Proof. We recall that the S.G.S. v(r) have already been described in Proposition
(2.11). Set I = p*; consider any solution wu(r), then for the corresponding
trajectory we have H(x(t),y(t),t) < 0, see remark (2.8), so it lies inside S-.
Since Sp+ is a surface homeomorphic to a cylinder and bounded in the (z,y)
variables, we have that x,- is bounded and positive. Thus the corresponding
u(r) is a G.S. with slow decay, that is u(r) ~ r=*.

Let us consider the trajectory (z(t), y(t), z(t)) of the system (3.3), corresponding
to u(r). If we assume that h(t) is monotone for ¢ large, we can conclude that
H(x(t),y(t),z(t)) is monotone. Assume at first that % = 0, so that local
uniqueness of the solution is ensured. Observe that the system (3.3) with £ < 0
admits a critical point P, = (zp,yp,0) where yp < 0 < zp. Note that the
value of H is negative and bounded below by the value of the function at P...
Thus the limit for t — oo of H(z(t),y(t),t) exists and is negative. Now observe
that the Q-limit set of the trajectory has to belong to the z = 0 plane. Note
that, if we restrict our attention to this plane, we obtain a system analogous
to (2.2) where h(t) = lim;—,och(t). Recalling that, from proposition (2.11), we
know that each negative value of H characterizes a closed trajectory of (2.2),
we have the thesis.

If the hypothesis is not satisfied we have that the system is only continuous in
the plane z = 0. So, in principle, we could lose local uniqueness of the solutions.
Note that H(x(t),y(t), z(t)) is monotone along the solutions, so we can assume,
for example, that it is increasing. Consider a trajectory (z(t,),y(tn),z(tn))
having (x1,31,0) and (z2,y2,0) in its w-limit set. Since H is monotone and
continuous we have H(z1,y1,0) = H(x2,y2,0), so the thesis is proved. O

The existence of the G.S. was already proved in [11], using different argu-
ments; anyway our approach allow us to refine the estimate on the asymptotic
behavior.

3.4 Remark. To satisfy the hypothesis of the theorem it is enough to take h(t)
monotone decreasing and strictly positive. For example, we can set ¢ = p* and
choose a function K (r) which is strictly positive and monotone decreasing.

Now we want to show which are the possible asymptotic behaviors of positive
solutions as 7 — 0 and as r — co. We need to introduce the following function:
Gi(r) = K(r)yrm=omm =9 = p(¢) where t = log(r).

This function is in fact K (r) multiplied by some power of r.

3.5 Proposition. Consider a solution v(r) of (1.2), defined in a neighborhood
of r = 00. Assume that jp«(r) is monotone for r large.

o Assume that there exists | > p. such that 0 < lim, 7i(r) < oo and
dj

suppose that lim, o | %L (r)r1+| = 0, for some § > 0 small. Then

v(r) ~ P T or o(r) ~r Pt

that is v(r) has slow decay or fast decay, respectively.

10



o Assume that there exist lo > 1y > p. and 6 > 0 such that

di
limsup ji, (r) < oo, liminf j,(r) >0, and lim i(7“)7”1'HS =0.

r—o00 T—00 T—00 T

Then, for any € > 0 we have

1 . __p
ST < v(r) < Cr GopF1 (slow decay),
€

where C > 0 is a given positive constant, or
o(r) ~r" 5T (fast decay).

Analogously consider a solution v(r) of (1.2), defined in a right neighborhood of
r =0, and assume that j,~(r) is monotone for t — 0. Then v(r) can have only
two kind of behavior as r — 0: the regular behavior, that is 0 < v(0) < oo, and
the singular behavior.

Assume that there exists | > p, and § > 0 such that

0< hII(l)jl(T’) <oo and lim £(7")7"17‘S =0.

Then the singular behavior is v(r) ~ r~ pI,
Assume that there exist lo > 11 > p, and 6 > 0 such that

dj? (7”)7”175

=0;

limsup ji,(r) < oo and liminf j,(r) >0, and lim
r—0 r—0 r—0

then the singular behavior is %rﬁ’rﬁ <wv(r) < Dy~ =5
Proof. We begin with the first claim. Consider system (3.3) with £ < 0. Observe
that, if the system is Lipschitz, the Q-limit set of any bounded trajectory must
belong to the z = 0 plane. The dynamics in this plane is that of the autonomous
system (2.2) where hi(t) = h;(2)|.=0.
Assume at first that there exists I such that lim,_,..h;(t) exists and
0 < limg—oohy(t) < 0o. Then system (3.3), with this choice for I, admits exactly
three critical points which are the origin, P = (zp,yp,0) and —P. Observe
that )

dhi(z) . dji(r) dr lim EM,J*E —0

z—0 dz z—0 dr dz r—cf dr

)

if we choose —¢ < §. Therefore, in the subset where x > 0 and y < 0, the
system is Lipschitz.

We have already described the case in which [ = p*, in the preceding theorem, so
we assume [ # p*. We recall that, for any trajectory defined in a neighborhood
of t = oo, we have that there exists the limit lim; oo Hp (zp= (£), yp= (t), ). Ac-
cording to observation (2.14) we cannot have periodic trajectories in the = > 0
subset. Thus bounded trajectories corresponding to positive u(r), can only have
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the origin or P as Q-limit set. Now recalling lemma (2.10) the corresponding
u(r) can only have fast decay or slow decay, respectively.

We examine now the general case: consider at first a trajectory (Z(t),g(t), z(t))
of system (3.3) with | = p*, such that lim;_ .. H(Z(¢),7(t),z2(t)) < 0. Let us
set now [ = Iy and consider system (3.3). Observe that the set S, ({z, = 0}
is bounded for any M > 0 and call D;, its interior. Note that the w-limit set
of (Zy, (), 71, (t), Z1,(t)) belongs to D,,. Therefore for the corresponding v(r) we

have v(r) < Dri=r71 for some given D > 0. Set now | = I, — e = ly: observe
that lim; oo h, (t) = 0, thus the only critical point of system (3.3) is the origin.
Once more the hypothesis on dJL’i—(:) ensure that 2) | 2=0= 0. Thus system (3.3)
restricted to > 0 and y < 0 is Lipschitz. If (x,(t), yi, (1), z1,(t)) converges to
the origin as t — oo, it must correspond to a solution u(r) with fast decay,

see lemma (3.5). Otherwise it is unbounded, therefore, if it has slow decay, we

have that, for any ¢ > 0, u(r) > %r_e_ll*%. Thus we can have solutions with
fast decay, corresponding to trajectory converging to the origin, and with slow
decay, which are the ones described in the thesis. Note that for the trajectory
described we have lim;_, o H;(x;(t), yi(t), ) <O0.

Now we claim that any trajectory (T« (t), §p=(t), Zp=(t))  such that

limy oo Hp+ (Zp+ (1), Jp- (£),t) > 0, has to get into the set z < 0 in finite time.
Note that this limit exists because of the assumptions regarding the monotonic-
ity of h(t) for ¢ large. We recall that we are considering trajectories which can
be continued in the future for any t. Suppose by contradiction that Z,-(¢) > 0
for any ¢; first of all note that there exists 7" such that Hp« (T« (t), Gp= (t),t) > 0,
for any t > T.
Consider system (2.2): since Hp(Zp- (1), Jp~ (£),t) > 0, when the trajectory is in
U™ it is bounded away from the isocline § = 0, while in U~ it is bounded away
from the isocline & = 0. If it is in U™ for some ¢ it will reach the isocline & = 0
and get into U™ in finite time, since § < —e < 0 for some € > 0. Analogously, if
it is in U, it will reach the y axis in finite time, since Z < —e < 0. This proves
the claim.

We have already examined bounded trajectories: consider now a trajectory
(241, (t), 51, (t), 21, (t)) that is unbounded as t — oo.

Then we have lim;_, oo Hy, (21, (t), 1, (t),t) = oo; thus there exist 7' such that
Hy, (21, (t), 41, (t),t), and hence H (&(t), §(t),t), are positive for any t > T. There-
fore there exist a T3 > T such that Z(7y) < 0, thus it cannot represent a
positive solution u(r). Reasoning in the same way we can conclude that, if
limy oo Hps (p+ (t), Yp= (t),t) > 0, then the trajectory of (2.2) must cross the
positive y semiaxis, thus it cannot represent a positive solution u(r).

The proof of the claim regarding the asymptotic behavior of solutions as r — 0
is completely analogous, so it will be skipped. O

Now we give a corollary to make clearer which could be the applications
of the theorem. In particular we want to emphasize that, if K(r) is uniformly
positive and bounded, then we can set [ = s = ¢ in the theorem.

3.6 Corollary. Assume that K(r) is strictly positive and bounded and that

12



it is monotone as r — 0 and as r — oo. Moreover assume that there exists
§ > 0 small, so that lim, _oK'(r)r'=% = 0 = lim, oo K'(r)r' ™ and consider a
solution u(r) defined and positive for any r > 0. Then as v — 0 we have

u(r) < oo (regular behavior) wu(r) ~r7a=2+  (singular behavior),
while as 1 — oo we have
u(r) ~ Pt (fast decay) u(r) ~ PP (slow decay).

3.7 Remark. Note that we can drop the technical assumption on K'(r) (and on
Ji(r)) of Proposition (3.5), here and in Theorems (3.8) and (3.10), but we loose
something on the precision of the estimate on the asymptotic behavior. To be
more precise we would have

n—

P ——P__ . .
er” 7 <u(r)<er=—»¥ as r—0 for singular solutions and

n—

_ P i . .
er” P <wu(r)<erh=rFT as  r— oo for slow decaying solutions.

We are ready now to state one of the main theorem of the paper.

3.8 Theorem. Assume that J(r) < 0 for any r > 0, but J(r) #Z 0, then all
the solutions u(r) of Eq. (1.2) can be continued for any r > 0 and are always
positive.

Ay Moreover assume that there exist I and § > 0 such that

0 < lim ji(r) < oo and lim
Then all the reqular solutions u(r) of Eq. (1.2) are G.S. with decay rate
~ TP as T — 00 (slow decay).

Ay Assume that there exist 11 > Iy > p, and § > 0 such that

B
limsup j;, (r) < oo, liminf j,(r) >0 and lim 7311 (r)rt+d = 0.
77— 00 T—00 r—oo dr

Then all reqular solutions u(r) of Eq. (1.2) are G.S. such that for any
given € > 0 we have

1 . __
SpTET I < u(r) < Cr T=pFT (slow decay),
€

where C' > 0 is a given positive constant.
Assume that G(r) <0 for any r > 0 and that G(r) # 0.

By Assume that there exist s and 6 > 0 such that

. - . djs 1-6 _
}1_)1110]5(7”) =D>0 and }1_1% W(T)T =0.
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Then there exists at least one S.G.S. v(r) with slow decay, that is v(r) ~

P51 asr — 0 and has the same rate of decay as the G.S., for r large.
If s > p* this is the only S.G.S. admissible, while if s = p* we could also
have other S.G.S., with the same behavior as the one described, both as
r— 0 and as r — oo.

By Assume that there exist so > s1 > p, and § > 0 such that

djs
0< lim i(l;lf Js, () < limsup js, (1) < oo and hl’I(l) (ji 2 (r)rt=% = 0.
r— r—0 r— r

Assume that there exists a S.G.S. v(r); then it must have the same decay
P
of the G.S. as r — oo and for any € > 0 we have %re =rFl < y(r) <

_ p___ . .
Cr =% gsr — 0, where C > 0 is a given constant.

C Assume thatn > p and K(r) = o(r~P), then all the solutions u(r) of (1.2),
can be continued for any r and are always positive and have positive finite
limit. No S.G.S can exist: if hypothesis By is satisfied then there exists

a singular solution which behaves like ~ PR as T — 0, is monotone
decreasing, is well defined and positive for any r > 0 and has positive finite
limat.

Proof. Set I = p* in (2.1); we recall that the trajectory (z(t),y(t)) of (2.2) cor-
responding to a regular solution u(r) of (1.2) have the origin as a-limit point.
Observe that, due to the assumption on J(r) we have Hy-(xp- (1), yp- (t),t) <0
for any ¢ and also as t — oo, see (2.8). Thus (z,+(t), yp-(t)) cannot converge to
the origin, hence u(r) cannot have fast decay.
Let us assume that [ > p* since the case | = p* has already been described
in theorem (3.3). Consider system (3.3) with £ < 0 and [ = I. Note that the
level sets of (2.2) defined by Hj(xj,y;,t) < 0 are bounded for any ¢, therefore
we deduce the continuability of the trajectory. Observe that the system ad-
mits three critical points which are the origin, P = (zp,yp,0) and —P, where
yp < 0 < xp. From the assumption on % we know that the system, restricted
to 27 > 0 and y; < 0, is Lipschitz.
Moreover, if A; is satisfied, S;[(){z = 0} is bounded, thus the trajectories con-
sidered must have P or the origin as 2-limit point. But, according to lemma
(2.10), in the latter case the corresponding u(r) would have fast decay. But this
is impossible, so (z7(t), y;(t), 27(t)) must converge to P and the claim is proved.

Assume that As is satisfied, then the trajectory belongs to Si,, thus it is
positive and decaying, but cannot have fast decay. Using proposition (3.5) we
have the thesis. Note that we are not assuming that h(t) is monotone, but we
already know that H(z(t),y(t),t) < 0, thus the proof still works.

Now assume that hypothesis B; is satisfied and consider system (3.3) with
& > 0 and | = s. Recall that the system admits three critical points: P, —P
and the origin. We recall that the hypothesis guarantees that %(Z)Lzzoz 0.
Thus P admits a center unstable manifold CU which is transversal to the z = 0
plane. Therefore the matrix of the linearized system has an eigenvector parallel
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to the z direction corresponding to the eigenvalue . Note also that if s > p*,
CU is one-dimensional; in fact it is a trajectory (Zs(t),7s(t), Zs(t)). Note that
limy oo Hs(Z,(t), gs(t),t) < 0, therefore limsup,_, _ o Hp+ (Tp« (1), Tp (1), 1) <
0; from the assumption on J(r) we have Hp-(Zp-(t),yp+(t),t) < 0 for any ¢,
unless we have some ¢ for which y(¢) > 0. But this case can be excluded since
the flow on the y axis is always going downwards. Thus we can repeat the proof
done for the regular solution and find the same behavior at co.

We want to prove that any S.G.S. v(r) corresponds always to a trajectory
belonging to CU. First of all observe that, for the corresponding trajectory,
lime—, oo H (2(t), y(t),t) < 0.

In fact, assume by contradiction that lim_,_ o H(x(t),y(t),t) > 0, then there
exists T > 0 such that H(z(t),y(t),t) > 0 for any ¢ < —T. Then following the
trajectory backwards and reasoning as done in the proof of proposition (3.5),
we conclude that the trajectories must have y(t) > 0 for some ¢. Then, recalling
lemma (3.1), we conclude that such a trajectory cannot represent a positive
solution. Thus lim; . H(x(t),y(t),t) <O0.

Moreover, from lemma (3.1), we know that v'(r) < 0 for any r. Thus we have
H(x(t),y(t),t) <0 for any ¢, see equation (2.4). Then we can repeat the proof
of proposition (3.5) and conclude that singular solutions, as r — 0 can only
have the behavior described in the thesis.

If B5 is satisfied, the non existence reasoning continue to apply, but we cannot
use anymore invariant manifold theory to conclude the existence of CU. Thus
we lose the existence result.

Suppose that C' is satisfied, then we cannot find any [ in order to make
limy_, o7y (t) > 0. In [11], pages 738-739, it is proved that decaying solutions can
only have fast decay. Therefore, if we set [ = p*, we find that decaying solutions
v(r) must correspond to trajectories (Z,-(t),gp-(t)) of (2.2) converging to the
origin, as t — oo; therefore we have lim;_, oo Hp« (Tp= (t), Jp~ (t),t) = 0. Let us
call u(r) a generic solution, regular or singular, which is defined and positive
for any r > 0. We have seen that u(r) corresponds to a trajectory for which
H,«(t) is negative for any ¢t. Moreover it is easy to prove that Hy-(t) is negative
also letting ¢ — oo. Thus u(r) cannot be decaying. The continuability and
the positiveness of a generic u(r), defined in a neighborhood of r = 0, follows
from the fact that the corresponding trajectory is forced to stay in the set
defined by H(z,y,t) < 0, which is bounded for any ¢ finite. Moreover, from this
observation, we also deduce that they are in the 4" quadrant, thus u/(r) < 0.
Thus u(r) is monotone decreasing and must have positive lower bound, thus the
thesis is proved.

The same kind of argument apply also to the trajectory belonging to CU, thus
the claim regarding the singular solution is proved as well. O

Once again we restrict to a simple situation in order to make clearer which

could be the applications of the theorem.

3.9 Corollary. Set ¢ > p*. Assume J(r) < 0 and that the function K(r)
is strictly positive and bounded and that the limit lim, K (r) = A > 0 ex-
ists. Moreover assume that there exists & > 0 such that there exist the limits
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lim, _oK'(r)r'=% =0 and lim, o, K'(r)r'*o.
Then any solution u(r) of (1.2) is a monotone decreasing G.S. such that u(r) ~
rq:rﬁrl, as r — oo. Moreover there exist a S.G.S. v(r) with slow decay, that

is u(r) ~ ra=7 1 both as r — 0 and as r — co. No other S.G.S. can eist.
Moreover if 1 < q < ﬁ and 1 < p < 2, these are the only positive solutions of
the problem.

We recall that, if ¢ > p* and K(r) is monotone decreasing, then J(r) < 0.
The corollary is an immediate consequence of the preceding theorem. We only
have to remark that, if 1 < ¢ < % and 1 < p < 2, the center stable manifold
departing from the origin is made up only of trajectories corresponding to reg-
ular solutions u(r). In fact, with these hypothesis we can apply the observation
(3.17). Otherwise we could have also solutions w(r) such that w(0) = A > 0
and w'(0) < 0.

3.10 Theorem. Assume that G(r) > 0 for any r > 0, but G(r) # 0, and that
there exist so > 51 > ps, | > p* such that

limi(r)lf Jsy (1) >0, lilréjsl(r) <oo, 0< limji(r)=L<o0

. o
fim G =0 Jim Gl =0

for some § > 0 small.

A Assume that L > 0, then there exist a S.G.S v(r) with slow decay, that is
or TR < v(r) < Cr 57T gsr — 0 and v(r) ~ P TR gs T — 00.
Moreover, if | # p*, this is the only S.G.S. with this behavior.

B Assume that the reqularity hypothesis is satisfied. Then there exist in-
finitely many S.G.S. w(r) with fast decay. To be more explicit any solution
n—p

w(r) has the same behavior as v(r) as r — 0, but we have w(r) ~ r~ =1
as r — 0.

C Assume that A holds, then any S.G.S. must belong to one of the families
of solutions described at the points A and B.

D Assume that J(r) > 0 for any r >0, but J(r) # 0, then all solutions u(r)
of Eq. (1.2) are crossing solutions.

Proof. We begin by proving D, recalling that Kawanida et al in [11] have al-
ready given a proof of this result. Consider system (2.2) where | = p* and a
trajectory (z(t),y(t)) corresponding to a solution u(r) of (1.2). First of all from
the assumptions on J(r) we have that H(x(t),y(t),t) > 0. Therefore, reasoning
as in the proof of proposition (3.5), we conclude that the trajectory starts from
the origin, gets into U™ and then crosses ¢ and gets into U~ in finite time. Then
it crosses the y negative semiaxis: thus u(r) is a crossing solution.

Now assume that A is satisfied and consider system (3.3) where £ < 0 and
I = [. Observe that it admits only three critical points O, P and —P, be-
longing to the z = 0 plane. Moreover P admits a center stable manifold C'S,
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transversal to the z = 0 plane. We recall that the hypothesis guarantees that
ng (2)| 2=0= 0. Note also that the w-limit set of any bounded trajectory has to
belong to this plane. Furthermore, if [ # p*, in this plane there are no periodic
trajectories and C'S is one-dimensional.

Let us call (x(t),y(t), 2(t)) a trajectory belonging to C'S and v(r) the corre-
sponding solution of (1.2). Then

tlim Hi(x7(t),97(t),t) <0 therefore tlim Hpe (Zp+ (1), Up=(t),8) = —M <0

Then it follows that

Rr) = =31 = (60 = ™ G s)as) <o

qg+1

Hence Hp-(&p- (1), Yp+ (t),t) < 0 for any ¢; thus using Proposition (3.5) we can
conclude.

Now assume that the regularity hypothesis is satisfied, and consider again
system (3.3) where ¢ < 0 and [ = [. Note that the origin admits a center stable
manifold C'Sy, which has at least dimension 2 and is transversal to the z = 0
plane. Consider a generic trajectory (Z;(¢), g7(t), 2;(t)) belonging to C'Sy and the
corresponding solution w(r) of (1.2). Recalling lemma (2.10) we can conclude
that w(r) has fast decay.

Moreover

Jim Hy(7(6),G7(6),6) = 0 hence  Hye (- (t), e (1), 1) = 0

Repeating the reasoning done for v(r) we find that w(r) is a S.G.S. with fast
decay.

Now assume by contradiction that there exists a S.G.S. a(r) different from
the ones described. Consider again system (3.3) where £ < 0 and [ = [. Observe
that any trajectory, bounded in the future and belonging to the z > 0 subset,
must have the origin or P as w-limit set, if [ # p*. Therefore their behavior
has already been described. If [ = p* the w-limit set could also be made up of
union of periodic trajectories; anyway the corresponding value of H would be
negative, therefore we could repeat the analysis just done and find S.G.S. with
slow decay.

Then a(r) must correspond to an unbounded trajectory (&7(t), g;(¢), Z7(¢)).

Thus limy— o Hj(27(t), §;(t),t) = oo; therefore there exist T > 0 such that
Hi(#;(t),9;(t),t) > 0 for any ¢t > T. Hence Hp«(Zp+(t), §p~(t),t) > 0 for any
t > T; therefore, following the proof of proposition (3.5) we deduce that there
exists 71 > T such that g« (71) > 0. Thus we have found a contradiction and
the thesis is proved. O

3.11 Corollary. Set p. < q < p*. Assume that K(r) is strictly positive and
bounded and that J(r) and G(r) are nonnegative for any r, and lim, . K(r) =
A > 0. Moreover assume that there exists § > 0 small so that

lim K'(7)r! =% = 0 = lim K’(r)ri*°.

r—0 7—00
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Then any solution u(r) of (1.2) is a crossing solution. Moreover there exists

exactly one S.G.S. v(r) with slow decay, that is u(r) ~ r#=»=1 both asr — 0 and
as r — 0o. Furthermore assume that the reqularity hypothesis is satisfied, then

there exist infinitely many S.G.S. with fast decay w(r), that is w(r) ~ PaeT
asr — 0 and w(r) ~ P51 asr — oo No other S.G.S. can exist. Moreover if
1<g< % and 1 < p <2, these are the only positive solutions of the problem.

This corollary is a straightforward consequence of the preceding Theorem.
Moreover, exploiting observation (3.17) we can get also the following corollary.

3.12 Corollary. Assume that the hypothesis of the corollary (3.11) are satisfied.
Moreover assume 1 < q < %1 and 1 < p < 2, then there are no solutions
positive in a right neighborhood of r = 0, different from the ones described in
corollary (3.11).

If ¢ > ﬁ, we cannot exclude the existence of positive solutions u(r) such that

u(0) =A >0 and v/(0) #0

3.13 Corollary. Consider the autonomous equation (1.1) where K(r) = K > 0
and p. < q < p*. Then for any given ball of radius R there exists one and only
one Dirichlet radial solution.

Proof. Set | = ¢ in (2.1): the system obtained is autonomous; we recall that the
trajectory of system (2.2) containing the regular solutions of (1.2) is invariant
for translation in ¢. So if u(r) is such that u(R) = 0 there exists a family of

Cptd
solutions uy(r) = u(sr)s” »  such that us(£) = 0, where s > 0 can be chosen
arbitrarily. O

Note also that if system (2.2) is autonomous we have exactly one S.G.S.
with slow decay corresponding to the critical point P. Thus it can be explicitly
computed. Using the ¢ invariance property of the trajectories we also deduce
the following result.

3.14 Corollary. Consider the autonomous equation (1.1) where K(r) = K > 0.

Assume q > py, then there exist exactly one S.G.S with slow decay v(r) =

a:prq:pﬁl Assume p, < q < p* and that the regularity hypothesis is satis-

fied, then there exist a family of S.G.S with fast decay vs(r), with the property
a—p+1 . .

vs(r) =w(sr)s” » , where v(r) is a member of the family.

Assume q > p*, then all the reqular solutions are G.S. with slow decay; let us de-

gq—p+1

note ua(r) the solution such that ua(0) = A >0, then ua(r) = ui (Ar)A »

Therefore, knowing a member of the family of G.S. or of S.G.S. we know all
of them.
Now we give some examples of application of the Theorems.

3.15 Remark. If ¢ > p, and K(r) = r%og°(r) where d > —p, using Theorem
(3.8), it is possible to solve completely the problem of the existence and of the
asymptotic behavior of G.S. and of S.G.S.
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n—p

We recall the definition of j(r) = K(r)r »

3.16 Remark. If j(r) = r~“log (r) + r=°2log?®2(r), where ¢ < d < p are real
numbers, each regular solution u(r) is a G.S. and its asymptotic behavior is
ruled by the term r~2log (7).

(" —q)

This approach is also useful to classify the S.G.S. and to refine the estimate
on the asymptotic behavior of G.S., given in [11], of some Matukuma-type
equations and of Batt- Faltenbacher-Horst equation.

We state now and proof an observation regarding the correspondence be-
tween the solutions of (1.2) and the trajectories of (3.2) belonging to the center-
stable manifold.

The claim is already been used, but we give it at the end, since it can be regarded
as an appendix

3.17 Observation. Assume that h;(t) is bounded as t — —oco. Assume 1 < p < 2
and 1 < < ;E5. Then trajectories (z;(t),5(t)) of (2.2) having the origin as
a-limit point correspond to regular solutions u(r) of (1.2) and viceversa.

Proof. To simplify the proof we will consider | = ¢ fixed, so we will leave unsaid
the subscript. We already know that solutions u(r) of (1.2) correspond to trajec-
tories (z(t),y(t)) of (2.2) having the origin as a-limit point. Viceversa we know
by lemma (2.10) that solutions w(r) corresponding to trajectories (z(t),y(t))
are such that u(0) is well defined positive and bounded. With this assumption
the claim could even be proved simpler, using invariant manifold theory and
exponential dichotomy, as done in Theorem (4.1) of [9] for the scalar curvature
equation. We only need to prove that «'(0) = 0.

Exploiting invariant manifold theory, it can be proved that

limy—, oo (2(¢), y(t))e~**. Therefore if & > 3 that is ¢ < p—il we are done. The
idea is to try to weaken this bound by observing that y(¢) — 0 faster than z(¢)
as t — —oo. We begin by making the following change of variables.

2—p1

= — e S =
W(t) = z(t) = |z|> where S T im

(3.4)

and m > 0 will be fixed opportunely later. Applying (3.4) on (2.2) we obtain
the following dynamical system:

—1

W= (y—a)W+¢{t)Z5 —W2tsmza

. 3.5
Z= SaZ+SWIW|[Smzitm (3.5)

We observe now that (W(t), Z(t)) — (0,0) as t — —oc which is a critical point
of (3.5). We impose [ —1 > S and m > 1 in order to linearize near the origin.
We can rewrite the first condition in this way: there exist a constant C' such
that

2—-p

0<C=1-1-S=q—-1- """
- 1 m(p—1)
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Now observe that, linearizing system (3.5) near the origin, we obtain the fol-

lowing matrix:
Sa 0
A= < 0 v—a >

Recalling that (W(t), Z(t)) belongs to the unstable manifold and using again
invariant manifold theory we can say that for any given € > 0 we have W (t) =
O(e5*=)) as t — —oo. Therefore we have:

|u/|p—1 — |y|7,—6 - W(t)x(t)e_ﬁt _ O(ea—ﬁ-i-sa—e)

Observe that (S 4+ 1)a — 8 =1 — C. Therefore if we assume 0 < C' < 1 we can
conclude that u'(0) = 0.

So if the two conditions 0 < C' < 1 and m > 1 are compatible, we have the
thesis. These conditions can be rewrite in the following way:

@-2p-1) 1 _(-Hp-1y . 1
2—p m 2—0p m

Thus we can choose m satisfying the conditions if and only if
p

I—2)(p—1
% <1 orequivalently [ < ——
2—p p—1
O
3.18 Remark. Observe that p* < %, so for the critical case the hypothesis of
observation (3.17) are always satisfied.

3.19 Remark. If we have [ > p%l, we cannot exclude the existence of solutions
u(r) such that u(0) = 0, but «/(0) # 0, which would be singular in the origin,
but in a different way from the one analyzed in this paper.
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