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POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC
EQUATIONS: A DYNAMICAL APPROACH.

ABSTRACT. This paper is devoted to the study of the structure of positive
radial solutions for the following semi-linear equation:
Au+ f(u,|z|]) =0.

We require f to be nonnegative and to exhibit both subcritical and supercritical
behavior with respect to the Sobolev critical exponent. More precisely we
assume that f is subcritical for v small and |z| large and supercritical for
u large and |z| small, and we give existence and non-existence results for
ground states regular and singular, with either fast or slow decay. We find a
surprisingly rich structure, which is characterized by two different patterns of
bifurcations.

We perform a Fowler transformation and we use a dynamical approach,
exploiting some ideas borrowed from Bamon, Del Pino, Flores, combining them
with the use of the translation of the Pohozaev function for this dynamical
context.
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1. INTRODUCTION

The purpose of this paper is to describe the structure of positive radial solutions
for the following semi-linear equation:

(1.1) Au(z) + f(u, |z]) =0

where z € R™, n > 2 and f is a continuous function which is assumed to be locally
Lipschitz in the u variable, positive and superlinear for v > 0, null for v < 0.
We assume that f is subcritical for w small and |z| large and supercritical for u

large and |z| small, with respect to the Sobolev critical exponent. We are mainly
thinking of two families of functions f; the first is a Matukuma-type equation:

(1.2) Fuslal) = k(|2 lur !

where u stands for max{u,0}, ¢ > 2 and e.g. k(|z|) = ku|z|®" + k|z]®, ky > 0,
ks> 0and —2 < 0% < A* < 6% < Ay, Ay 1= (n—2)[g—22=1] > \* = 22 [g—2-1 ],
The second is

(1.3) fu, [2]) = ko (|2)Juy
where 2, := % <@ <2 = % < g%, and k,, ks are positive functions.

In fact if the domain is radial (e.g. the whole of R™), usually positive solutions
inherit this symmetry, see [4, 8, 24]. This is the case e.g. for f of type (1.2) and
E(|z]) = ku|x|®" + ks|z]®", see theorem 2 in [4], and for f of type (1.3) when k, and

k. are positive constants, see [2]. Therefore we just consider radial solutions and
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we commit the following abuse of notation: we write u(r) for u(z) where |z| = r.
Then the solutions of (1.1) satisfy the following singular O.D.E.

(1.4) W+ 2

u' + f(u,r) = 0.

Here and later ’ denotes the derivative with respect to r. We classify positive
solutions in ground states (G.S.), singular ground states (S.G.S.) and crossing so-
lutions. By G.S. we mean a positive solution u(r) defined for any r > 0 such that
lim, oo u(r) = 0. A S.G.S. of equation (1.1) is a positive solution v(r) such that
lim, o v(r) = 400 and lim, 4 v(r) = 0. Crossing solutions are solutions u(r)
such that there is R > 0 for which u(r) > 0 for any 0 < r < R and u(R) = 0, so
they can be considered as solutions of the Dirichlet problem in the ball of radius R.
We further distinguish the solutions according to the asymptotic behavior: positive
solutions may be regular, i.e. lim, ,ou(r) = d > 0 and we set u(r) = u(r;d), or
singular if lim,_,ou(r) = co as r — 0; we say that a positive solution v(r) has fast
decay (f.d.) if lim,— v(r)r"=2 = L > 0 and we set v(r) = v(r; L), and that
it has slow decay (s.d) if lim, 4 oou(r)r"~2? = oo. Usually it is possible to give
better estimates on the behavior of both singular solutions and slow decay solu-
tions: in particular it is possible for all the functions f considered in this paper,
see subsection 3.1.

Semi-linear equations of this type, and their generalizations to the p-Laplace and
¢-Laplace case, have received a great interest in the last 30 years. The structure
of positive solutions in the purely subcritical and supercritical cases is well known.
The situation becomes more interesting and challenging when f exhibits both the
behaviors. Such a phenomena is easily obtained for the scalar curvature equation,
ie. f of type (1.2) and ¢ = 2* := HQ—fQ see e.g. [, 3, 19, 16]. This setting is
very sensitive to the behavior at = 0 and at r = oo of the function k. Another
case, well studied in literature, is the one in which f is supercritical for u small
and subcritical for u large, see [23, 9, 7, 17]. In this setting the solutions u(r; d) of
(1.4) are crossing solutions for d large and G.S. with f.d. for d small, and there is
at least a value d*, usually unique (see [21]), such that u(r;d*) is a G.S. with f.d.
Furthermore there are uncountably many S.G.S. with f.d. and S.G.S. with s.d.,
see [14]. Comparing [7] and [17], it might be observed that the same structure for
positive solutions appears also when f is of type (1.2), ¢ = n2—f2 and k(r) ~ r® with
a>0asr—0and k(r) ~r? with 8 <0 as r — oo, see also [14].

In this paper we consider the opposite situations, which seems to be more difficult
but more natural: we assume that f is subcritical for u small and supercritical for
u large. In fact this case is less studied and understood, and exhibits a strikingly
different and richer structure for positive solutions. The seminal papers in this
setting are [2] and [11], where the authors consider (1.4) where f is of type (1.3)
and k, = ks = 1. They showed that the structure of positive solutions undergoes
different families of bifurcations. More precisely in [2] the following results have
been proved, combining the dynamical approach introduced by Johnson Pan and
Yi in [20, 19] with new topological ideas.

Theorem 1.1. [2] Let f be of type (1.8), ky, = ks = 1, ¢° € (24,2%), then for any
k € N there is €, (q°) > 0 such that (1.4) admits at least k G.S. with f.d. for any
q“ € (2*,2* + e). Analogously fixz g* > 2*, then for any k € N there is e (¢*) > 0
such that (1.4) admits at least k G.S. with f.d. for any ¢° € (2* — &5, 2%).

Theorem 1.2. [2] Let f be of type (1.3), ky = ks = 1. Fiz g* > 2*, then there is
eo(q"™) > 0 such that (1.4) admits no G.S. with f.d. for any ¢° € [2.,2. + €0(q™))-
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Theorem 1.3. [2] Let f be of type (1.8), ky = ks = 1. Fiz ¢° € (24,2%); there is
a sequence of values r7(q%) N\, 2%, such that (1.4) with ¢* = r7(q*) admits either a
G.S. with s.d. or a S.G.S. with s.d.

Analogously fiz q* > 2*; there is a sequence of values r7(q%) /' 2*, such that
(1.4) with ¢° = r3(q*) admits either a S.G.S. with f.d. or a S.G.S. with s.d.

We quote [22] where the authors found an explicit formula for a G.S. with s.d for
this equation assuming ¢® = 2(¢g* —1). These solutions should be “rare”, since they
may be found as intersection between 2-dimensional and 1 dimensional objects
in R3 exactly as S.G.S. with f.d. But their existence gains more relevance from

the following result proved in [11]. Let us denote by 7, := 2% m and by
g* = 2n=2vn=1=2 4r  ~ 10 and set 6* = oo if n < 10. The origin of the values

n—2v/n—1—4
2, < 0, < 2" < " will be explained just after Remark 2.1 in relationship with the

Fowler transformation.

Theorem 1.4. [11] Let f be of type (1.3), ky = ks =1, and 2, < §° < 2* < q*.

(a): Assume (1.4) admits a S.G.S. with either f.d or s.d., and 2* < q* < &*.
Then (1.4) admits infinitely many G.S. with f.d., too.

(b): Assume (1.4) admits either a G.S. with s.d. or a S.G.S. with s.d., and
Tx < q° < 2" < q*. Then (1.4) admits infinitely many G.S. with f.d., too.

(c): If ¢° < q“ satisfy either (a) or (b) then for any k € N, k > 1, there is
Nk > 0 such that (1.4) admits at least k G.S. with f.d. whenever |¢* — q“|+
lg® — q° < .

These results revealed how sensitive the structure of positive solutions is to
changes in the exponents. The so called “bubble tower” phenomenon described
in theorem 1.1 was reproved by Campos in [6] using a variational approach and a
Ljiapunov-Schmidt reduction; in fact in [6] the authors also obtain an asymptotic
estimate for G.S. with f.d. in terms of the explicitly known G.S. with f.d. of the
critical case.

Similar results where obtained in [1, 10] for f of type (1.2). More precisely in [1],
using variational methods and a Ljiapunov-Schmidt reduction, the authors prove
the existence of the “bubble tower” phenomenon for (1.2) and k(r) e.g. of type
k(r) = kyr® + ke ky >0, kg > 0 and —2 < 6% < A\* < §° < A\.. In [10] the
authors let the so called “natural dimension” change values and exploit topological
methods to prove the coexistence of G.S. with s.d. and of S.G.S. with f.d. for
particular values of the parameters and special functions k(7). As a consequence
they also find two different sequences of G.S. with f.d. w(dg,r): one such that
dr, — d* where u(d*,r) is a G.S. with s.d. and one for dj, — +o0.

In [15] we picked up two very special non-linearities f which exhibit the same

structure for positive solutions and for which the bifurcation diagrams can be de-
scribed in all details, i.e. f of type (1.2) with k(r) = max{r®", 7%} and f(u) =
max{u? ~' 44 =1}, In fact in these cases we obtain the analogous of theorems 1.1
and 1.4; we also prove the analogous of theorem 1.2 together with its symmetric
counterpart (non-existence for ¢° large), and we proved 1.3 specifying the type of
“rare” solution we have. Moreover the approach is constructive in nature, so it ex-
plicitly gives specific values for which the non-existence results hold and it suggests
a method to give a computer assisted proof to estimate rigorously the “smallness”
of the parameters €1 involved in the “bubble tower” phenomenon.
In [15] we conjectured that the very special f analyzed in that paper are the proto-
type for a more generic class of non-linearities: here we extend most of the results
of [15] to a wide family of functions f(u,r) supercritical for u large and r small,
and subcritical for u small and r large.
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So we extend the results found in [2], to a larger class of spatial dependent
functions including (1.2) and (1.3), unifying them with the ones obtained in [1].
In fact we also complete the analysis performed in [2] by extending their non-
existence result with its symmetric counterpart, moreover we complete [1] revealing
the presence of both the bifurcations phenomena appearing in [2, 15]. However we
are not able to generalize to this context the constructive proof developed in [15],
so we cannot evaluate numerically the smallness of the parameters involved in the
theorems.

Moreover we cannot predict whether the G.S. with fast decay found in theorem
2.4, analogous of 1.3 are regular or singular, while this is possible in [10, 15], but
in both the papers just in very special cases.

The paper is divided as follows. In section 2 we introduce the Fowler transfor-
mation and we state the main results proved in this paper. In section 3 we develop
some tools useful for our analysis: in subsection 3.1 we construct the unstable and
the stable manifolds for non-autonomous systems; in subsection 3.2 we combine
Kelvin inversion with Fowler transformation to obtain a very clean method to pass
from results for regular solutions to results for f.d. solutions; in subsection 3.3 we
discuss the critical problems, which will be perturbed in section 4 to prove the
existence results. In section 4 we prove the main theorems and we discuss briefly
the consequences for the Dirichlet problem in the ball. In the appendix we show
how it is possible to weaken slightly the hypotheses if we fix a particular family of
functions f, in particular if f is of type (1.2) or (1.3), and we give some examples
of functions to which the results apply.

2. FOWLER TRANSFORMATION AND STATING OF THE RESULTS.

In this section we introduce the Fowler transformation for the Laplace operator,
which changes equation (1.4) into a two dimensional dynamical system. Setting

%7 =00 +2—n, > 2, r=et

21) oz =u(r)r™, y=u(r)rett, g(z,t) = flze ™t el)elor T2

we pass from (1.4) to the following system

(22) i) =8 )G+ (ot )

We denote by
F(u,r) = / f(s,r)ds, Gi(z,t) = / gi(s,t)ds = F(ze™ ™t ettt
0 0

We set R? := {(z,y;) | 21 > 0} and RZ := {(z4,31) | w1 < 0 < ;}. We assume first
that (2.2) is autonomous and we review quickly some well known facts. To fix the
ideas we take f(u,r) = Kr°lut|9"!, where K > 0 and § > —2, and we set | = 2%
to obtain

23) (i) =08 2 ) () ()

We stress that in this case we passed from a singular non-autonomous O.D.E. to an

autonomous system from which the singularity has been removed. Moreover note

that when 6 = 0 we can simply take | = ¢ to obtain (2.3). System (2.3) admits two
2(n—1),

critical points for [ > 2, := =~=~*: the origin O = (0,0) and P = (P,, P,). The

origin is a saddle point and it admits a one-dimensional C'! stable manifold M’ and
a one-dimensional C! unstable manifold M. Observe that M~ (respectively M")
is split by the origin into two connected components: a line contained in the x <0
denoted by M? (resp. denoted by M*), and a smooth manifold which departs from

o) =
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the origin and enters R2, denoted by M?* (resp. denoted by M™). In the origin M’
is tangent to the line y = —(n — 2)x, while M" is tangent to the z-axis. Since we
focus on positive solutions we are just interested on the semi-plane R%. From some
asymptotic estimate we deduce the following useful result, see e.g. [12, 13] for the
proof in the p-Laplace context.

Remark 2.1. The regular solutions u(r) of Eq. (1.4) correspond to the trajectories
X, (t) of system (2.3) departing from points in M* and viceversa. Positive solu-
tions with fast decay u(r) of (1.4), correspond to trajectories X;(t) of system (2.3)
departing from points in M?®.

The critical point P is asymptotically stable if [ > 2* asymptotically unstable
if 2, <1< 2* and a center if [ = 2*.

A key tool in the analysis of equation of type (1.1) is the Pohozaev identity. In
this dynamical context it can be rewritten through the following observation: let

n— y?
Hl(xayat): 9 xy+?+Gl(x,t),
then, if @ox () = (22« (t),y2+(t)) solves (2.2) with [ = 2* we have the following
dHo- OG-
(2.4) (@ (1)) = =5 (a2 (1), 1)

Moreover if @xa«(t) and x;(t) are trajectories of (2.2) corresponding to the same
solution u(r) of (1.4) we have the following

(2.5) Hye (@2 (t),t) = e~ (P W H (2(2), 1) .

We stress that (2.4) and (2.5) hold for the general non-autonomous system (2.2).
For any fixed value of ¢, the 0-level set of the function H; is made up by a closed
curve contained in R, having a corner in the origin and by the lines y = 0 and
y = —(n — 2)z in the z < 0 semiplane. From (2.4) we see that Ha«(x2x(t),1)
is increasing in t (respectively decreasing) along the trajectories xqx(t) of (2.2)
whenever Ga«(x,t) is increasing in ¢ (resp. decreasing in t). Moreover from (2.5)
we see that Hos (o= (t),t) and Hj(a;(t),t) have the same sign. So, if we consider
system (2.3), for any Q € M} and R € M} we get H;(Q,t) < 0 < H;(R,t) when
I >2 H(R,t) <0< H(Q,t) when 2 < [ < 2%, and H;(Q,t) = 0 = H|(R,1)
when [ = 2*. Using (2.4) and (2.5), it can be proved that the phase portrait of
the autonomous system (2.3) is as depicted in Fig. 1, see e.g. [13]. Then it is
easy to classify positive solutions: in the supercritical case (I > 2*) all the regular
solutions are G.S. with slow decay, there is a unique S.G.S. with slow decay; in
the critical case (I = 2*) all regular solutions are G.S. with fast decay and there
are uncountably many S.G.S. with slow decay; in the subcritical case (2 < I < 2*)
all the regular solutions are crossing, there are uncountably many S.G.S. with fast
decay and a unique S.G.S. with slow decay.

We stress that all the previous discussion concerning the autonomous Eq. (2.3)
continues to hold for any autonomous super-linear system (2.2), more precisely
whenever g;(z,t) = g/(x) and g;(z) has the following property, denoted by GO (see
[13] for a proof in the general p-Laplace context).

GO: g;(x)/x is an increasing function for > 0 and

lim 248 ¢ i 9
x—0 x€X r—+00 x

Note that GO guarantees the uniqueness of the critical point P. We introduce
two further critical values. Consider first f = Kr’|u,|7~! and denote by 0. < o*
the real roots of (a + )2 + 4avy(q — 2) belonging to (2., +00); we set 0, = 2.
and ¢* = oo if these roots are not real or do not belong to the interval. We have
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FIGURE 1. Sketches of the phase portrait of (2.3), for ¢ > 2 fixed.

Oy -

_ 4q717\/(q71)27(q*1) 19 < oF = 4q*1+\/(i:12)2*(q*1) nps

n—2

if § =0 we get
Fo 1= 2222 and by 6% o= 22212 if n > 10 and 0, = 2., 0" = o0 if
n < 10. (these are the parameters involved in theorems 1.4 and 2.5). It is easy to
show that P is a focus if 0, < I < o* (a center for | = 2*), an unstable node if
2, <l < 0, and a stable node if [ > o*. Now consider an autonomous system (?7)
satisfying GO We denote by o, < ¢* the values such that P is a focusif o, <[ < o*
(a center for [ = 2*), an unstable node if 2, <! < o, and a stable node if | > o*.

As we said in the introduction, we ask for f to be superlinear, i.e. without
further mentioning in all the paper we require the following:

FO0: For any r > 0 the function f(u,r)/u is strictly increasing in u and

lim f(u,7)=0 and lim f(u,r) =400,

u—0t U——+00
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We stress that FO implies that, for any fixed T' € R, any autonomous system (2.2)
where g;(z,t) = gi(z,T) and | > 2, satisfies GO. Such a property allows us to
establish in a standard way that any trajectory @;(t) of (2.2) is well defined for any
t € R. We list here the hypotheses used in the main theorems.

G.: There is [, > 2 such that for any @ > 0 the function g;, (x,t) converges
to a {-independent locally Lipschitz function g, *(x) £ 0 as t — —o0, uni-
formly on compact intervals. The function g, () satisfies GO. Moreover
there is @ > 0 such that limt%,oo%e_w’fglu (z,t) = 0.

Gs: There is I5 > 2, such that for any = > 0 the function g;_(z,t) converges
to a t-independent locally Lipschitz function gltoo (x) 20 as t — +0o0, uni-
formly on compact intervals. The function gltoo(z) satisfies GO. Moreover
there is @ > 0 such that limt%+oo%emgls(x,t) =0.

Ay %Glu (x,t) > 0, for any t € R and any x > 0, strictly for a certain t € R
and any = > 0.

Ag: %Gls(z,t) <0, for any ¢t € R and any z > 0, strictly for a certain ¢t € R
and any = > 0.

Hypotheses G,, and G5 are needed to ensure the existence of an unstable and
a stable manifold in the non-autonomous case, while A, and A, are technical
conditions (related to (2.4) and to the Pohozaev identity), required to apply the
perturbation argument explained in this paper. Now we are ready to state the main
results proved in this paper.

Theorem 2.2. Assume Ay, Gy and Gg with 2, < ls < 2*. Then for any k € N
there is €x(ls) such that (1.4) admits at least k G.S. with fast decay, whenever
2% <1, < 2" 4+ ep(ls). Analogously assume Ag, G, and Gg with 1, > 2*. Then
for any k € N there is e (l,,) such that (1.4) admits at least k G.S. with fast decay,
whenever 2* — e (l,) < ls < 2*.

We stress that theorem 2.2 is a generalization of theorem 1.1 and of the analogous
results in [15]. For the proof we have rephrased for this context the topological
ideas introduced by Bamon et al. to prove theorem 1.1, connecting them with the
Pohozaev function H.

We also have a non-existence counterpart, analogous to theorem 1.2.

Theorem 2.3. Assume G, and G with I, > 2*. There is e9(l,) > 0 such that
(1.4) admits no G.S. with either fast or slow decay, and no S.G.S. with either fast
or slow decay, whenever 2, < ls < 2, + eo(ly)-

Analogously assume G, and G5 with 2, < ls < 2*. There is My(ls) > 2* such that
(1.4) admits no G.S. with either fast or slow decay, and no S.G.S. with either fast
or slow decay, whenever 1, > My(ly).

We stress that this theorem is completely new for f of type (1.2), apart from
the special non-linearity discussed in [15], and the second claim is new for f of
type (1.3) even in the spatial independent case. Once again we have no clue on the
magnitude of the parameters involved, while for the special non-linearities discussed
in [15] we can say that non-existence holds e.g. whenever 2, < l; < 0. < o* < l.
We also have a result similar to theorem 1.3.

Theorem 2.4. Assume A,,G, and G with 2, < l, < 2*. There is a sequence
r*(l) \( 2% such that whenever l, = r*(l,), (1.4) admits either a G.S. with s.d., or
a S.G.S. with f.d, or a S.G.S. with s.d. Analogously assume Ag, G, and G4 with
ly, > 2%,

There is a sequence 7% (1) /7 2* such that whenever Iy = r*(1,,), (1.4) admits either
a G.S. with s.d., or a S.G.S. with f.d, or a S.G.S. with s.d.
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The proof of this result is inspired by the proof of theorem 1.3. However in the
original proof in [2], there is a small mistake which is fixed here. Due to this fact we
have an alternative between three species of “special” solutions, and not just two as
in [2], but we think such a correction is needed even in theorem 1.3. In proposition
4.11 we prove the result of theorem 2.4, but asking for a further assumption, weak
but very difficult to be verified (it is verified by the f discussed in [15]): in such a
case we can say which type of special solution we have.

As we said in the introduction, these special solutions play a key role since they
reveal the presence of a further resonance phenomenon, the one discussed in [11],
which drives to the following result.

Theorem 2.5. Assume that f satisfies G, and G with 2, < 1, < 2* <ls. Then
the conclusion of theorem 1.4 holds, with [, replaced by q* and ls by ¢°.

In fact when f takes the following form (including the motivating cases (1.2) or

(1.3))
(2.6) Fur) = 3R )yl

we can slightly weaken A, and A,. As usual we assume k*(r) > 0 for r > 0, and

we introduce the following functions for ¢ = 1,...,j:
Jl_’i(r) ::/ STLT_2‘1ii [ki(s)sz(lfqi)/(ld)} ds,
0 ds
(2.7)

. +oo n—2 i d i i
() = / sT Tz ¢ o [kl(s)sg(l*q )/(172)} ds,
- s

We emphasize that integrating by parts we can trivially redefine the functions

Jli’l(r) in a way which fits the case where the functions k?(r) are not differentiable.

Assume G, and Gg; when f takes the form (2.6) we can replace A, and Ag

respectively by the hypotheses A/ and A’ stated below:

Al Jl;"i(t) >0forany t € R, and any i = 1,...,7, and Zgzl Jl;’i(T) >0
for a certain T' € R. There is M > 0 such that agt,u (z,t) >0 for any > 0
and any ¢ < —M. ' ‘

Al: JP(t) <0forany t € Rand any i =1,...,4, and >7_, J;~/(T) < 0 for
a certain 7' € R. There is M > 0 such that agtls (z,t) <0 for any z > 0
and any t > M.

Proposition 2.6. Assume that f is of type (2.6); then theorems 2.2 and 2.4 hold
with Ay, replaced by Al and Ag replaced by A”.

We stress that A, implies A/ and A, implies A’. In fact we believe that A,
and Ag and their generalization are technical requirements, and might be removed
with a different approach (perhaps applying variational techniques and Lijapunov-
Schmidt reduction directly on (2.3) as done in [6]).

3. BASIC DYNAMICAL TOOLS.

In this section we develop some dynamical tools which will be useful for the
proofs of the main theorems in section 4.

3.1. Stable and unstable manifolds for the non-autonomous system. The
following notation will be in force throughout all the paper. We use capital letters
for trajectories of autonomous systems and small letters for trajectories of non-
autonomous systems; we write xi(t, 7; Q) = (z7(¢, 7; Q), yi(t, 7; Q)) for a trajectory
of (2.2) where | = [, evaluated at ¢ and departing from Q € R% at t = 7. Assume G,,
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(respectively Gg); we denote by P, (—oc) (resp. by P, (400)) the unique critical
point contained in R3 of the autonomous system (2.2) where g, (z,t) = 9, (@)
(resp. g1, (z,t) = gl'*'oo(a:))

Observe that system (2.3) is invariant for translations in ¢. Therefore if X;(t)
is a solution, X;(t + 7) is a solution as well. Equivalently if u(r) is a solution of
(1.4), then v(r) = u(re™)e®” is a solution as well. Using this fact we also get the
following, see [13].

Remark 3.1. Let u(r;d) be a regular solution of (1.4), and let X; (¢, 7; Q%) be the
corresponding trajectory of the autonomous system (2.2), where g;(z,t) = ¢;(2)
satisfy GO, so that Q" € M™. Then d is a smooth monotone function of 7 such that
d(T) = 400 as 7 — —oo and d(7) — 0 as 7 — 400, and viceversa. Furthermore if
we fix 7, d(Q™) — 0 as Q™ — (0,0) and viceversa, and if ¢ < 2* then d(Q") — +00
as Q" tends to the critical point P.
Analogously let v(r; L) be a fast decay solution of (1.4) such that lim, _, o v(r; L)r"=2 =

L > 0, and let X (¢,7;Q%°) be the corresponding trajectory of (2.2) such that
Q?° € M?. Then L is a smooth monotone function of 7 such that L(r) — +o0
as 7 — +oo and L(7) — 0 as 7 — —oo, and viceversa. Furthermore if we fix T,
L(Q®) — 0 as Q° — (0,0) and viceversa, and if ¢ > 2* then L(Q®) — 400 as Q°
tends to the critical point P.

Now we turn to consider the non-autonomous systems: before constructing sta-
ble and unstable manifolds in this setting we give some simple remarks. Let us
. . . ) - - ,
introduce polar coordinates in (2.2): set p = \/22 + y? and 6 = arctan (;’—i) Then
we have

(3.1) 6 = a;sin(f) cos(h) — sin’(0)

_cos(0)gi(plcos(0)]+,t) ™ z}

P 272
Hence, if G5 holds, large trajectories of (2.2) rotates clockwise and their speed
of rotation increases as the radius increases. So if x;, (t) becomes unbounded as
t — 4oo it must cross the y negative semi-axis transversally for some T € R.
Reasoning similarly in backwards time we get the following.

, for@E[—

Remark 3.2. Assume G, with I, > 2; if @, (¢t) € R% for any ¢ < 0, then it is
bounded in that interval. Similarly assume G with I > 2; if @, (t) € R% for any
t > 0, then it is bounded in that interval.

In fact this Remark has been used to draw the phase portraits of the autonomous
systems depicted in figure 1, too. Now we construct stable and unstable manifolds,
and we show in remark 3.3 below, that regular solutions of (1.4) correspond to
trajectories of the unstable manifold while fast decay solutions of (1.4) correspond
to trajectories of the stable manifold.

Assume G ; we introduce the following 3-dimensional autonomous system, ob-
tained from (2.2) by adding the extra variable z = e®*:

.%"lu g, 1 0 xy, 0
(3.2) ., | = 0 m, O w, |+~ (@, 22
z 0 0 w z 0

Observe that (3.2) admits 2 critical points: the origin and (P, (—00),0). The
restriction of (3.2) to z = 0 is the autonomous system (2.2) where g, (x,t) =
glzoo(:zc)7 and this plane attracts all the trajectories as ¢ — —oo. The technical

hypotheses concerning aglt“ is needed to ensure (3.2) to be smooth. So this system

is useful to get information about the asymptotic behavior of trajectories in the
past. Whenever [, > 2, the origin admits a 1-dimensional stable manifold and a
3-dimensional unstable manifold; these manifolds are split by the z axis into two
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connected components: we denote by W;" the branch of the unstable manifold
which enters = > 0. We set

Wi (1) ={Q [ (Q,e™) e Wi }.

It is easy to check that W} () is a 1-dimensional manifold for any 7 € R. Moreover
Q € W (7) if and only if @, (¢, 7; Q) converges to the origin as t — —oo and the
corresponding solution u(r) of (1.4) is a regular solution. We set

Wi (-o0) :={Q ] (Q,0) € Wl:}§
it follows that W} (—o0) coincide with the unstable manifold M*(—o0) of the au-
tonomous system (2.2) where g, (z,t) = g; ™ ().

The critical point (P, (—oc0), 0) admits an unstable manifold which is 3-dimensional
if 2, <1, < 2*, and 1-dimensional if [, > 2*. If (@, e®") belongs to such a manifold
the trajectory @, (t,7; Q) of (2.2) converges to P, (—00) as t — —oo and corre-
sponds to a singular solutions of (1.4). So, we also get the existence of uncountably
many singular solutions for 2, <[, < 2* and the uniqueness of the singular solution
for 1, > 2*.

Similarly if G is satisfied we set [ = I and ((t) = e~ ®* and we consider

i‘gﬁ (07 1 0 N 0
(3.3) w, = 0 m 0 v, || o (g, 29
z 0 0 —w ¢ 0

Again (3.3) admits 2 critical points, the origin and (P, (+00),0), and its restriction
to z = 0 gives back the autonomous system (2.2) where g;_(z,t) = gl+°°(x) Such a
plane attracts all the trajectories as ¢ — +o0o. The origin admits a 2-dimensional
stable manifold which is split into two connected components by the z axis: we
denote by W the branch which enters z > 0. We set

Wi () :={Q1(Q,e”") e W' };

so that W () is a 1-dimensional manifold, and @ € W (7) if and only if z,, (£, 7; Q)
converges to the origin as ¢ — +oo and the corresponding solution w(r) of (1.4) is
a fast decay solution, for any 7 € R. We set

Wi (+00) :={Q | (Q,0) € W’} = M*(+00)

where M®(+o00) is the stable manifold of the autonomous system (2.2) where
g, (z,t) = g?“x’(z) (P, (+00),0) admits a stable manifold which is 1-dimensional
if 2, < s < 2*, and 2-dimensional if [ > 2*. Again it follows that we have respec-
tively a unique slow decay solution of (1.4) if 2, < [, < 2*, and uncountably many
slow decay solutions if I; > 2*. In [13] we proved, with weaker assumptions and in
the p-Laplace context, the following result which generalizes Remark 3.1.

Remark 3.3. Let u(r) and v(r) be the solutions of (1.4) corresponding respectively
to the trajectories x; (¢, 7; Q) and x;, (¢, 7; R) of (2.2). Assume G, with [, > 2,,
then u(r) is a regular solution for (1.4) if and only if @ € Wj'(7); analogously
assume G, with Iy > 2., then v(r) is a fast decay solution for (1.4) if and only if
R e Wy (7).

We stress that W} (7) (respectively W} (7)) depends smoothly on 7, for any
T € [~00,+00) (resp. for any 7 € (—o0,+00]). More precisely if W} (1) (resp.
Wy (7)) intersects transversally a line L in a point Q(7), then Q(7) inherits the
smoothness of ¢, (z,t), whenever g; (z,t) is uniformly continuous in ¢ for ¢t < 7
(respectively inherits the smoothness of g, (z,t) whenever g, (z,t) is uniformly
continuous in ¢ for ¢ > 7), see [19] and [18].
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In the next section we look for intersections between stable and unstable man-
ifolds of the origin, corresponding to G.S. with f.d; we also look for S.G.S. with
f.d. and for G.S. with s.d corresponding respectively to intersections between the
unstable manifold of (P, (—00),0) and the stable manifold of the origin, and to
intersections between the stable manifold of (P, (400),0) and the unstable mani-
fold of the origin. So we need to compare (3.2) and (3.3), and to switch between
different values of the parameter [ in (2.1). Assume Gu and Gs; let u(r) be a
solution of (1.4) and x;, (t,7; Q) and x;, (¢, 7; R) be the corresponding trajectories
of (2.2) where [ equals respectively [, and ls; then R = exp[(a;, — oy, )7] and

x, (t,7;Q) = exp[(ay, — oy )tz (8,73 R)

So, using also Remark 3.3, we see that if x;, (¢, 7; Q) converges to the origin as
t — 4oo (respectively as t — —o0), then x;, (¢, 7; R) converges to the origin as
t — +o0o (resp. as t — —0o0), whenever [, s > 2,.

Assume G, and Gg where 2, < [, < 2* < [,; we introduce the following no-
tation. We denote by (! (¢, 1), 2(t)) the unique trajectory of (3.2) contained in
the unstable manifold of the critical point (P, (—00),0), by u(r,J) the correspond-
ing singular solution of (1.4) and by (z;!(t,{),((t)) the corresponding trajectory
of (3.3). Analogously we denote by (zj (£,1),((t)) the unique trajectory of (3.3)
contained in the stable manifold of the critical point (P, (+c0),0), by v(r,1) the
corresponding slow decay solution of (1.4) and by (zj (,1),2(t)) the corresponding
trajectory of (3.2).

Furthermore we introduce the sets:

Wi(r) == {Qelor )T | Q € Wit (r)}
Wi (7)== {Qe(.m)T | Q € Wi(r)}

Obviously W}*(7) and W} (1) are both manifolds for any 7 € R. Let u(r) be a
solution of (1.4), let @, (¢, 7; Q) and xy, (¢, 7; R) be the corresponding trajectories of
(2.2), then u(r) is a regular solution if and only if @, (¢, 7; Q) and x;, (¢, 7; R) both
converge to the origin ast — —oo,i.e. @ € W' (1) and R = Qelos—on)7 ¢ Wi (r).
Similarly u(r) has fast decay if and only if R € W (7) and Q = Re (o, —0)7 ¢
Wi (7).

3.2. The Kelvin transformation. Another change of variables which is very
useful in the context of equation of type (1.1), is known in literature as “Kelvin
transformation”. Let us set

(3.4) s=rt, a(s)=s*"u(l/s), fla,s)= f(as""21/s)s72 ",

From a straightforward computation we see that if u(r) satisfies (1.4) then a(s)
satisfies the following equation and viceversa.

(3.5) %[ﬂs(s)s"_l] + f(a,s)s" 1 =0.

We stress that regular solutions w(r) of (1.4) are driven by (3.4) into fast de-
cay solutions 9(s) = u(1/s)s?>~™ of (3.5), while fast decay solutions v(r) of (1.4)
are driven into regular solutions @(s) = wv(1/s)s?>~" of (3.5); moreover u(0) =
limg 400 9(8)s™ 2, and lim,_, o0 v(r)r" 2 = 4(0). Obviously (3.4) defines an in-
volution, i.e. if we apply it twice we go back to the original equation.

The combination of (3.4) and (2.1) gives rise to a further involution which as-
sumes a more clear form; to the best of our knowledge this observation has not
appeared previously in literature. In fact when we apply (2.1) to (3.5) by setting

T=—t, Ty(7) = a(e)e T =u(e e M = u(e')e™?,

3.6
> Gi(r) = @ (eT)elmmHDT = 4/ (eh)el V! — (n — 2)u(e!)e™!
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we simply pass from (2.2) to the following system:

(37) ( ZZT; ) = ( . > ( K >+ ( (i) )

We stress that (3.7) is obtained from (2.2) simply by changing the values of the
parameters (agq, ;) into (—7;, —ay), and evaluating the function g;(z, t) in —7 inspite
of t. We give the details of the computation for reader’s convenience

a ~ ~ T — T ~ T — T ~ -~
Ezz(T) = —ma(eT)e " + i (e )e( nADT - =& (7) + Gi(7)

0 . o ., _ B i 9
F () = g[(yl(T)eﬂ”T)e A7) = —quf(T) + e —
€

; 2 ) -
= —ouiii(7) — fla(em), e )e" 7T = —qufi(r) — f(a(eT)el" DT e T )e (AT =
= —ai(7) — f(@(r)e™ e " )e (I = —q;5(7) — gu(Fi(T), —7)

Thus when f satisfies G, with [ = [, then f satisfies G5 with [ = L,, and when f
satisfies G5 with [ = [ then f satisfies G, with [ = L,,, where L, and L,, are such

that ar,, = —v;, and vz, = -y, or, = —y, and v, = —ay,, i.e.
2 2u(n—-1)-2 2 2[(n—1)-2
(3.8) Ly=2—— = [lu(n — 1) ”]; [,—o_ 2 _ Asn—1)—2n
Y, lu(n—2)—2n+2 . ls(n—2)—2n+2

Note that (3.8) brings | = 2* initself, | = 0, inl = 0%, 1, € (24,04) and l;, € (04, 2%)
respectively in L, > o* and L, € (2*,0") and viceversa, and finally | = 2, in co.
So a subcritical system is brought in a supercritical one and viceversa.

Moreover the manifolds W} (T') of (2.2) is changed into the manifold W} (-7
of (3.7) while W} (T') of (2.2) is changed into W} (~T') of (3.7). Finally the trajec-
tories oy’ (t,)) and xj (¢,1) are changed respectively into 7 (¢,1) and 7 _(¢,]).
These observations allow us to translate quickly the proofs for regular solutions into
proofs for fast decay solutions, and the claims concerning singular solutions into
claims concerning slowly decaying solutions, and viceversa.

We recall that Lin and Ni in [22] proved explicitly the existence of a G.S. with
s.d u(r) for (1.4) with f of type (1.3) with k, = ks = 1, and ¢*“ = 2¢®°. In fact they
find u(r) = A[B+72]~/(4"=2) where A and B are computable constants depending
on n and ¢°. Using Kelvin inversion we find that

(3.9) o(r) = u(1/r)r?™™ = A[B + r~ 2|7 /(@=2)p2-n

is a S.G.S. with f.d. solving equation (1.4) where f(u,r) is of type (1.3) with
ku(r) =r~C and ky(r) = v, where C' = (n —2)(2* —¢*) and D = (n —2)(¢* — 2*)
and ¢“ = 2¢°. We stress that, as pointed out in the introduction, the existence
of G.S. with s.d such as u(r), and of S.G.S. with f.d. such as v(r), seems to be a
rare phenomenon taking place for precise sequences of values ¢* and ¢°. However
it indicates the presence of the resonance phenomenon discovered by Flores in [11],
which is translated in this context by theorem 2.5.

3.3. Some remarks on the critical case. The proof of theorem 2.2 is based
on a perturbation argument performed on (3.2) and (3.3) respectively in the case
2, <ls <l, =2" and Iy = 2* < [,. In this section we deepen our knowledge of
these critical cases.

Let us set Hox(x,y, £00) = limy 4o Hax(2,y,t). When G,, holds and [,, = 2*
(respectively G holds and I, = 2*) there are uncountably many periodic trajecto-
ries in the plane z = 0 (resp. in the plane ¢ = 0), corresponding to the level sets
Hy«(z,y, —00) = b where Hax(Pax(—00), —00) < b < 0 (resp. Ha«(z,y,+00) =b
where Ha« (Pa~(400),400) < b < 0).

From an easy continuity argument we also find the following.
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Remark 3.4. Assume G, with [, > 2% then there is a unique singular solution
u(r,}) for (1.4), and it is the one corresponding to the unique trajectory of (3.2),
denoted by (zf* (t,]),e"), converging to (P, (—00),0) as t — —oo. Moreover if a
solution u(r) of (1.4) is always positive for 0 < r < R (for a certain R > 0), then the
corresponding trajectory (i, (t),2(t)) of (3.2) belongs to Wj or it coincides with
(zf* (t,1),e7"). Assume G5 with 2, < Iy < 2%, then there is a unique slow decay
solution v(r,1) for (1.4), and it is the one corresponding to the unique trajectory
of (3.3), denoted by (:I:fs(t,T),e_m), converging to (P, (4+00),0) as t — +oo.
Moreover if a solution v(r) of (1.4) is always positive for » > R (for a certain
R > 0), then the corresponding trajectory (z, (), 2(t)) of (3.3) belongs to W or
it coincides with (7 (t,1),e”").

We recall that u(r; d) is the regular solution of (1.4) satisfying u(0;d) = d, and
v(r; L) is the fast decay solution satisfying lim, _,,.ov(r; L)r"~2 = L. We need a
technical result which ensures the existence of crossing solution u(r) of (1.4) and
of Dirichlet solutions in exterior domains, i.e. solutions v(r) of (1.4) having fast
decay, which are null with positive slope for » = R and are positive for r > R.

Lemma 3.5. Assume G, and G4 with 2, < l; < 2* < l,. Then there are D > 0
and L > 0 such that each regular solution u(r;d) is a crossing solution for 0 < d <
D, and each fast decay solution v(r; L) is a Dirichlet solution in exterior domain
for 0 < L < L. Moreover if p(d) is the zero of u(r;d) and R(L) is the zero of v(r; L)
then p(d) and R(L) are continuous for 0 < d < D and 0 < L < L, p(d) — +00 as
d—0and R(L) -0 as L — 0.
Proof. Let us set

Al ={(z,y) |~z <y <0}, A ={(z,y)| -~mzr=y<0}
When we consider (2.2) with [ = [, we see that @ > 0 for any trajectory in Alfr7
and ¢ = 0 for any trajectory in A?. Moreover A?‘ is invariant for the change of
coordinates Q@ — exp|(ay, — oy, )7]Q which allows to pass from trajectories of (3.2)
to the corresponding trajectories of (3.3). Assume G with 2, < I, < 2* and follow
W (+00) from the origin towards R2%: it intersects transversally A?S a first time in
a point denoted by Q(l) and a second time in a point denoted by Q(?) Let R € R?
and 7 € R: we denote by X, (¢, 7; R; +00) the trajectory of the autonomous system
(2.2) where g = ¢i°, departing from R at t = 7. For any R € A}, [|R| < 1Q2)]
and any 7 € R there is T(R) such that X, (t,7; R; 4+00) intersects transversally the
y negative semi-axis and X;_(¢,7; R;+0c0) > 0 for ¢ € [1,T(R)). Moreover T'(R)
is continuous and T(R) — +o00 as R — (0,0). From a continuity argument we
find 7% > 0 large enough so that, for any R € A, ||R| < 1Q(2)/2||, there is 7(R)
such that the trajectory x;, (t,7%; R) of (2.2) intersects transversally the y negative
semi-axis and z;_ (¢, 7; R) > 0 for ¢ € [7°,7(R)); again 7(R) is continuous and tends
to 400 as R — (0,0).

Assume further G,, and consider (3.3) and the 1-dimensional unstable manifold
Wi(r) where 7 > 7°: it is tangent to the = axis in the origin. So for any 7 > 7° there
is a small branch of W;*(7), say W;:(T), contained in {Q € AZ 1Rl < 1Q(2)/2]}.
It follows that for any R € Wl“(r) and any 7 > 7° the trajectory i, (t,7°; R)
intersects the y negative semi-axis at ¢ = 7(R). So the corresponding regular
solutions u(r;d) of (1.4) are crossing solutions and their first and unique zero is
R = exp[r(R)]. From the transversality of the crossing and from Remarks 3.3 and
3.1 we find the continuity of p(d), as well as the fact that p(d) = +o00 as d — 0.

The proof concerning Dirichlet solutions in exterior domains v(r) can be obtained
arguing similarly or using Kelvin inversion, see subsection 3.2. U
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Remark 3.6. Assume G, with [, = 2" and A,,, then there are uncountably many
singular solutions u(r): one of them, u(r,]), corresponds to (x4.(t,1),z(t)), i.e.
the unique trajectory of the unstable manifold of the critical point (P, (—o0),0).
Any singular solution u(r) different from wu(r, ) corresponds to a trajectory xo«(t)
which rotates clockwise indefinitely around P;,(—o0) as t — —o0.

Analogously assume Gg with [y = 2* and Ag, then there are uncountably many
slow decay solutions v(r): one of them, v(r,1), corresponds to (x3.(t,71),((t)), i.e.
the unique trajectory of the stable manifold of the critical point (P, (+00),0). Any
slow decay solutions v(r) different from v(r, 1) corresponds to a trajectory xo«(t)
which rotates clockwise indefinitely around P, (+00) as t — +o0.

Proof. We just discuss the claims concerning the behavior as ¢ — —oo, the oth-
ers being analogous. Assume G, with [, = 2*; linearizing close to (P, (—0o0),0)
we see that the critical point admits a one-dimensional unstable manifold and a
2-dimensional center manifold. Let (x2x(t),2(t)) be a trajectory of (3.2) corre-
sponding to a solution w(r) which is positive for r small and it is singular. Assume
A, it follows that Ha« (22« (t),t) is increasing and it admits a limit b. If b > 0 then
(z2~(t), 2(t)) has to cross the x axis. If b = 0, then its a-limit set is either the origin
or the union of the homoclinic trajectory and the semi-lines {(z,0,0) | < 0} and
{(z,—(n—2)z,0) | z < 0}: in the former case u(r) is a regular solution, in the latter
u(r) becomes negative for r small. So b < 0 and the a-limit set of (a2« (), 2(t)) is
either the critical point (P, (—00),0) or one of the periodic trajectory contained in
R% x {0}. In the latter case x2«(t) rotates indefinitely clockwise around Py, (—00)
and Remark 3.6 is proved. In the former case either (a2« (t), 2(t)) is contained on
the unstable manifold of (P, (—00),0), so that u(r) is in fact u(r,)) and we are
done, or it is contained in the center manifold of (P;,(—00),0). Let pp,0p denote
the polar coordinates on the z—y plane centered in P;, (—o0), and let (pp(t), 0p(t))
be the polar coordinates of @2« (t). Linearizing the system on (P, (—00),0), we see
that Op(t) ~ —2=2¢ and pp(t) — 0 as t — —oo slower than exponentially, hence
pp(t) > 0 for ¢ finite. So wa«(t) rotates indefinitely clockwise around P, (—0o0).
To conclude the proof of Remark 3.6 we have to show that there are uncountably
many singular solutions. So let us choose 7 € R and consider the set

S ={(z,y,e"") | Hy«(z,y,7) <0, and = > 0}.

For any @ € S, the trajectories xa«(t,7; @), are such that Hox (2« (t,7;Q),t) is
negative and increasing for ¢ < 7 and converges to a negative limit; hence the
corresponding solutions u(r) of (1.4) is singular. d

From the previous argument we easily get the following useful result.

Remark 3.7. Assume G, with [, > 2 and consider a trajectory xa«(t) such that
liminf, o Hox (22« (t),t) > 0. Then there is T such that xa«(t) crosses the pos-
itive y semi-axis transversally at ¢t = T'. Analogously assume G4 with I > 2, and
consider a trajectory xa«(t) such that liminf, , | o Hax (@2« (t),t) > 0. Then there
is T such that o« (t) crosses the negative y semi-axis transversally at t = T

To prove theorem 2.2 we look for trajectories @y, (t, 7%, Q") and x;, (¢, 7°, Q%),
where Q% € W (1), Q° € W (7°), such that x;, (¢, 7%, Q") — 2y, (t, 7°, Q%) has at
least 2k + 1 zeroes. Then using a topological argument borrowed from [2] (propo-
sition 4.1), we infer the existence of k intersections between unstable and stable
manifolds, corresponding to k distinct G.S. with fast decay.

We need the following results which generalize Lemmas of [2].

Proposition 3.8. Assume G, Gs with 2, < ls < l, = 2%, and A,. Then all the
reqular solutions are crossing, while all the fast decay solutions are S.G.S. with fast
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decay. If v(r) has fast decay and v(r) Z u(r,]) then the corresponding trajectory
@2« (t) is bounded for t < 0 and xo«(t) — Py(—00) changes sign indefinitely as
t — —o0.

Proof. Let 7 € R, Q € Wi (1), R € Ws5.(71): the trajectories xax«(t,7; Q) and
@2+ (t,7; R) of (2.2) correspond respectively to a regular solution u(r) and a fast
decay solution v(r) of (1.4). Therefore

tl}r_nong* (2= (t,7;Q),t) =0 = tET@oHQ* (o (t,7; R), 1),

and from (2.4) we find that Ha«(x2x(t,7;Q),t) and Ha«(x2x(t,7; R),t) are both
increasing in ¢t. So proposition 3.8 is a straightforward consequence of Remarks 3.6
and 3.7. (]

With a specular argument, or using Kelvin inversion, we can prove the following.

Proposition 3.9. Assume Gy, G5 with 2* =1, > ls, and As. Then all the regular
solutions are G.S. with slow decay while all the fast decay solutions are solutions of
the Dirichlet problem in the exterior of a ball. Moreover if u(r) is a reqular solution,
and u(r) # v(r,1), then the corresponding trajectory xa«(t) is bounded for t > 0
and xo9+« (t) — Py (+00) changes sign indefinitely as t — +o00.

4. PROOF OF THE MAIN THEOREMS.

The proofs of the existence results are based on a topological analysis of the
mutual positions of Wi, W , of the singular trajectory (! (¢, 1), 2(t)) and of the
slow decay trajectory (z7 (t,1),2(t)) of (3.2). We divide this section in 5 parts. In
subsection 4.1 we perform the topological analysis needed to prove the existence re-
sults, i.e. theorem 2.2 and 2.4, which are actually proved respectively in subsection
4.2 and 4.4. Subsection 4.3 is devoted to the non-existence result, theorem 2.3, and
subsection 4.5 to the sketch of the proof of the resonance phenomenon explained in
theorem 2.5, and to the consequences of our analysis for solutions of the Dirichlet
problem in the ball.

4.1. The topological construction. We collect in this page the definitions and
the constructions, inspired by [2], which will be relevant in the whole section.

Let v(t) = (v2(t), vy (1)) : [a,b] — R? be a curve and Q = (Q,, Q,) € R? a point
not in . We introduce polar coordinates (6.(t), p,(t)) centered in Q for ~(t), i.e.
we set ¥(t) = Q + p(t)(cos(04(t)),sin(0,(t))). We call angular number O(~, Q)
and winding number w(y, Q) respectively

(@) o, =1t

where [-] denotes the integer part. Hence ©(«, Q) is a rotation number and w(+y, Q)
is the number of complete rotations of 4 around Q. Let T;(t) = (v*(t), #(t)) for
i = 1,2 and t € [a,b] be curves in R which do not intersect each other; here
¢(t) is a smooth monotone function such as ¢(t) = 2(t) = e as in (3.2), or
() = ((t) = e ™" as in (3.3) or ¢(t) =t as in [2]. Following again [2], we call
linking number of 41,72 in [a,b] the number w(vy; — 72, (0,0)), i.e. the number
of complete rotations of a curve around the other. We extend the notion to the
case a = —oo (and to the case b = +00), assuming that the limit lim;_, .0 (t)
exists (respectively the limit lim; . .0 () exists). In fact we can go back to the
usual notion, introduced in [2], simply by a change of parameters: e.g. passing
from t either to z = e®* or to ( = e~ ! as independent variable. We stress that we
use winding and linking numbers in the case where such a limit is finite, but the
argument goes through even when it is infinite.

M%Q>[W%QMF““

mmq

2T

)
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By construction the linking number is invariant under homotopies which pre-
serve the endpoints of the curves and their ¢ coordinate, and keep the curves
disjoint. Let u°(r) and v°°(r) be solutions of (1.4) such that u°(r) > 0 for
r € (0, RY), and v>°(r) > 0 for r € (R, +00). We set T% = In(R%), 2* = exp[wT?],
¢* =1/2% T® = In(R"), 2* = exp[@wT?®], ¢* = 1/2°. We denote by (zp. (1), 2(1))
and (z7°(t), 2(t)) the trajectories of (3.2) corresponding respectively to u® and v°°;
analogously we denote by (a7 (t),((t)) and (z{°(t),¢(t)) the trajectories of (3.3)
corresponding respectively to u’ and v>°. Consider (3.2) and choose z > 0 and
7 =1In(z)/w.

Assume first that u°(r) is a regular solution and let o“(z,s) be a continuous
parametrization of the branch of W* (1) between the origin and & (7), i.e. 0%(2,s) €
Wit (r) for any s € (0, 2), 0%(2,0) = (0,0), 0%(2,2) = = (7).

Set A = {(2,5) | 0 < s <z} and ¢%((0,0)) = (0,0). We assume w.l.o.g that the
function o%(z,s) : )\ — R? is continuous in both the variables. We denote by
¥%(z,8) + A — W2 the continuous function defined as ¥(z,s) = (0"(2,5), 2).
Note that £%(z,0) = (0,0, z) and X%(z,2) = (:c?u (1), 2).

Now assume that u®(r) = u(r, ) and let 0%(2, s, *) be a continuous parametrization
of the whole W (1), i.e. 0"(z,s,%) € W (7) for any s € (0, 1), 0%(2,0,%) = (0,0),
o%(z,1,%) = sc?u(r). Again we assume w.l.o.g that the function o%(z,s,*) :
[0,+00) x [0,1] — R? is continuous, and we denote by ¥%(z,s,*) : [0,+00) x
[0,1] — W the continuous function defined as ¥"(z,s) = (¢0"(2,s),2). Again
¥4(2,0,%) = (0,0,2) and ¥*%(2,1,%) = (2], (7),2), but £*(0, s, %) is a parametriza-
tion of the whole W} (—o0) x {0}.

Similarly, when v>°(r) is a fast decay solution, we construct a continuous function
0%(z,5) : N\ = R? such that 0°(z,5) € W (1) for any s € [0, 2], 0%(2,0) = (0,0),
0°(2,2) = z7°(7). Then we denote by ¥*(z,s) : \ — W3 the continuous function
defined as ¥°(z,s) = (0°(z,s),%). While when v>°(r) = v(r,1), we construct a
continuous function o*(z,s,*) : [0,+00) x [0,1] — R? such that o°(z,s,*) pa-
rameterize W (1) for any s € [0,2], 0°(2,0,%) = (0,0), 0°(2,1,%) = x°(7).
Then ¥°(2,8,%) : [0,+00) x [0,1] — W} is the continuous function defined by
5525, %) = (0°(2,5, %), 2).

Analogously when we work with (3.3) we fix ¢ > 0 and 7 = —In(¢) /o; if u®(r)
and v>°(r) are respectively a regular and a fast decay solution, we construct a
continuous function §%(¢,s) : A — R? and §%(¢,s) : A — R? such that §°(¢,s) €
we (1) for any s € [0,(], §°(¢,0) = (0,0), §°(¢,¢) = xf’:’(r), and 0%((,s) € VVl"(T)
for any s € [0,¢], 6“(¢,0) = (0,0), 6“(¢,¢) = @ (7). Then we define A*((,s) =
(6°(¢, 8),¢) and A“((,s) = (6“(¢, 8),¢). When u¥(r) = u(r,]) and v>°(r) = u(r,t
), reasoning as above we construct A¥(¢,s,*) = (0%((,s,*),() and A%((, s, %) =
(6%(¢, 8,%),(), where 6“(, s, x) and §°(C, s, *) for s € [0, 1] are parameterizations of
the whole manifolds W;*(7) and W} (7) respectively.

We are ready to state the followihg key result inspired by proposition 1.4 of [2].

Proposition 4.1. Assume G, and Gs with 2, <l; < 2* <[, < co. Assume that
there are 0 < R* < R < 00, a solution u°(r) defined and positive in (0, R®) and a
solution v™°(r) of (1.4) defined and positive in (R*, 00). Assume that u® # v> and
that u® — v™> has at least 2k + 1 zeroes in (R*, R®) for some k > 1.

If there is RY < R® such that v™®°(R') = 0, then the winding number of s — a*“(Z, s)
around xy°(T') is equal or smaller than —k, for any Z = exp[wT] > 2. Similarly,
if there is R? > R® such that u®(R?) = 0 the winding number of s — °({, s) around
a:?s (T) is equal or larger than k, for any ( = exp|—wT] > (*.
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Proposition 4.1 is very similar to proposition 1.4 of [2]. However in the proof
of proposition 1.4 in [2] the authors require that both u’ and v have a non-
degenerate zero, while we need just one of them to have this property. In fact
such an assumption is not explicitly required in the statement of proposition 1.4 in
[2]: such a discordance does not affect the proof of existence of G.S. with f.d., but
generates confusion in the proof of theorem 1.3 (of this article but proved in [2]),
which is the analogous of theorem 2.4 (proved in this article).

We divide the proof of proposition 4.1 in Lemmas 4.2 and 4.3. The former is
obtained repeating word by word Lemma 3.2 in [2], the latter is obtained adapting
and simplifying Lemma 3.1 in [2], keeping the main ideas.

Lemma 4.2. If u® — v™ has at least 2k + 1 zeroes in (R*, R®), then the linking
number of the curves w?u (t) and zi°(t) in (T, T°) is equal or smaller than —k.

Lemma 4.3. Assume that the linking number of p (t) and ®°(t) in [T, T"] is
—k.

If there is R* < R® such that v™°(R') = 0, then the winding number W of
s — 0%(z,s) around z°(T') is equal or smaller than —k for any z > 2b.
Similarly if there is R?2 > R® such that u®(R?) = 0 then the winding number of
s — 6°(¢, s) around m?u (T) is at least k for any ¢ > (°.

Proof of Lemma, 4.2. The function h(t) = 7 (t)—x7°(t) solves a non-autonomous
274 order linear equation of the form:

(4.2) h— (ou, +,)h+at)h =0,

and it has 2k 4 1 zeroes. Since the flow of the first order system associated to (4.2)
points clockwise on the £ axis, it follows that (h, h) cannot make a complete rotation
counterclockwise. Therefore we can count the rotations of (h(t), h(t)) around the
origin by the zeroes of h(t), so the Lemma is proved. O

Proof of Lemma 4.3. Assume that there is R' € (0, R*) such that v>*°(R!) = 0.
From Lemma 4.2 it follows that the linking number of the curves «p (t) and {°(t)
in the interval [T, T"] decreases as the interval increases. So the linking number
L of xp (t) and x°(t) in (—oo,T’] satisfies L < —k. The proof of Lemma 4.3
is based on the homotopies HO(Z, S) and HO*(Z,S) depicted in pictures 2 and
3, between (7. (t),z(t)) and the curve obtained following the curve I'*(s) (and
I'“(s,*)) to be defined below. Roughly speaking I'*(s) (and T'“(s, x)) is obtained
following the segment between the origin and the point (0,0, 2;), and then the
manifold W*(7%) between the origin and (p (T°),z"). We choose HO(Z,S) so
that HO(Z,S) € W, hence it does not intersect the curve (z°(t), 2(t)). Thus
|L| equals the number of rotations R of I'*(s) around (z;°(t), z(t)). Then we show
that the winding number W of s — ¢% (2, s) around mf’f(Tb) equals either —R or
—-R—1.

The leading idea in the construction of HO(z, s) is the following. Since v>°(r)
is not a G.S. with f.d. (x7°(t), 2(t)) does not intersect the 2-dimensional manifold
W so we can project (zp (t), 2(t)) on W} (73) x {2} following the manifold W;*,
and the homotopy is readily constructed.

We distinguish the case where ap (t) corresponds to a regular solution of (1.4),

from the case where x} (t) coincides with @}* (¢,]) so it corresponds to a singular
solution. We begin from the former, so we define the curve

T (s) (0,0,2° +5) for s € [-2°,0]
5T Bu(eb, s) for s € [0, 27



Let us denote by ©1 and O3 the angular numbers ©; := ©(z°(t), (0,0)) for t < T°,
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FIGURE 2. This picture gives a further explanation of the con-
struction of the homotopy ho(z,s) and HO(Z,S), in the case
where @] (t) corresponds to a regular solution. Set z = e7;
the curves s — ho(z,s) for s € [0, zp] are obtained following the
manifold W} () x {z} from (0,0, 2) to (x} (7),2), then following
(zp (t),2(t)), for t € [1,7]. On the left we have a 3-dimensional
sketch of system (3.2) and of the objects involved in the construc-
tion; on the right we have flattened the 2-dimensional manifold
W and represented it on a plane. We have denoted by W* the
2-dimensional manifold (filled with a yellow pattern) which is the
open connected subset of W} between the z-axis and the tra-
jectory (:c?u (t),2(t)) for t < 7, (denoted by a blue dotted line).
In fact W* is the image of ho(z,s) for (z,s) € A\. The (green)
solid lines indicate the branches of the 1-dimensional manifolds
W (1) x {z(1)} between the origin and (&) (7), 2(7)), at different
values (i.e. 7=1In(Z,/w), 7 =In(Z/w), 7 = In(Zy/w)). We have
denoted with the (red) dashed lines the curves s — ho(z,s), for
z = z and on the right for z = z,, too. The homotopy HO(Z, S)
between (xp. (t), z(t)) for t < 7, and the parametrization $*(Z;, 5)
of the branch of W} (7p) is obtained through the projection de-
picted on the right. Since at each step the homotopic curves lie on
the 2-dimensional manifold W* it follows that H0(Z, S) does not
cross the curve (zp°(t),2(t)) for t < ;5 in fact such a curve does
not intersect W* for any ¢ € R.

and by O, := O(a" (2", 5), ;2 (T")) for s € [0, 2°]. Then

(4.3)

where [a] denotes the integer part of a.
constructing the homotopy ho(z, s), between a curve equivalent to (a:?u (t), 2(t)) for

t < T® and the branch of W*(T?) x {2} going from (0,0, 2°) to (. (T?), 2*). More

R =1[0,—-04], W =[04],

To construct HO(Z,S), we begin by
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precisely we define the continuous function

b [ X%(z,s) if0<s<z
o(z,5) = (a:?u(ﬁ), 5) ifz<s<2b

Roughly speaking if we set €™ = z(7), then s — ho(z(7), s) is obtained follow-
ing W (1) x {z(7)} from the origin towards (zj (7),2(7)), and then following
(. (1), 2(t)) for t € [r, 7.

Note that ho(0, z(t)) = (xf. (t), 2(t)) for t < T?, while ho(2", s) for 0 < s < 2P isa
parametrization of the branch of W (T?) x {2} between (0,0, 2*) and (xp, (T%), 2%);
moreover ho(0,0) = (0,0,0). Then we define the homotopy HO(Z, S) : [0,2°] x
[—2P, 2% — Wi by

(0,0,(Z+9)y) f0<Z<zb and —-2<85<0

HO(Z’S):{ho(Z,S) ifo<Z<zt and 0<8<2b ’

so that HO(Z, —2") = (0,0,0) and HO(Z, z*) = ho(Z, ") = (ac?u (T?), 2°) for any
7 € [0, 2°]. Hence the endpoints of the homotopy s — HO(Z, s) are the endpoints
of the curves (xp (t),z(t)) and T“(s), for any Z € [0, 2%]. Moreover HO(0,S) =

(a:?u(lnz(vs)), S), and HO(z%,8) = ¥%(z%,S) whenever S € [0,z%]. Furthermore
HO(Z,S) € Wi, so it does not intersect the image of (7 (%), 2(1)).

Hence from the invariance for homotopy we see that the number of rotations R of
I'(s) around (xf°(t),2(t)) satisfies L = —R.

Set T! = In(R') from a straightforward computation it follows that the angular

(arcta;(rnfm ) c

number of x{°(t) with respect to the origin in (—oo,T"] equals —
(—=1/4,0). Hence —3/4 < ©; < —1/4.
So, from (4.3) we find

W=[0 <-R=L< -k,

and this concludes the first part of the proof of Lemma 4.3.

Now we assume xp (t) = xj* ({,t). The argument has to be modified slightly

ly

since ¢ (t) /4 (0,0) as t — —oo. We introduce the curve T'(s, *) as follows:
w [ (0,0,2 +5) for s €[—2°0]

(s, %) = { Yu(2b,s,%)  for s €[0,1]

We introduce the homotopy HO*(z,s) : [0, 2] x [~2,1] — W defined as follows:

(0,0,2(s +2)) if —2<s<—1
HO*(z,5) ={ 2"(zs+1,%) if —1<s<0 .
(x?u(wwps)zﬂzb) F0<s<1

We stress that the function s — HO*(z,s) is obtained following the z axis from
the origin to (0,0, %), then following W} (1) x {z} from the origin to (zy* (7,
), 2(7)), then following (x}* (t,!),2(t)) for t € [r,7]. In particular the function
Y(s) := HO*(0,s) is obtained following the manifold W}"(—oc) x {0} from the
origin to P (—o0), then following (zj! (,1),2(t)) for t € (—oo,7]. Thus T(s) is
homotopic to HO* (2%, s) = I'“(s, ). Moreover the homotopy HO*(z, s) preserves
the endpoints, i.e. HO*(z,—2) = (0,0,0) and HO*(z,1) = (2} (7,1),2) for
any z € [0,2°]. Furthermore HO*(z,s) € W for any (z,s) so it does not cross
the curve (z7°(t),2(t)) for any t € R. Thus the number R of complete rotations
of I'(s, *) around (x7°(t), 2(t)) equals the number of complete rotations of Y(s)
around (z7°(t), 2(t)).
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Since z7°(t) < 0 < y°(t) for t < Ty and s — 0*(0,s,%) C RY for s € (0,1], we
see that the angular number O(t) of s — 0%(0, s,*) around z°(t) in the interval
(—o0; T, satisfies O(t) € [—3/4, —1/4] whenever ¢t < T, and converges to a finite
value OF € [-3/4,—1/4] as t — —oo.

Denote by ©' the angular number of s — o*“(2%,s,*) around x{°(T"); note
that the linking number of the z axis and (z7°(t), 2(?))) equals [-©1] € [1/4;3/4];
denote by ©F the angular number of :c?u (t) — xp°(t) with respect to the origin for
t € [T*;T?], and note that [© +©Y] = L. So, using the invariance for homotopies
we see that

0¥ +0r=-0,+0";
hence W = [OF] = [@F + ©T +©,]. Thus W < L = —k.

Once again the converse result can be obtained either from Kelvin inversion,
or simply repeating the argument for W7 (7%) x {2°} and w?s (t). O From a
careful analysis of the previous proof we see that, if we are in the hypotheses of
Lemma 4.3 then L € {—k—1, =k} if z} (t) corresponds to a regular solution, while
Le{-k—=2,—-k—1,—-k}ifxp (t) = (z" (t, 1), 2(t)).

4.2. Proof of theorem 2.2. In this subsection we always assume G,, and G ¢ with
2, <lg < 2* <. The proofs we are going to discuss are achieved perturbing the
auxiliary critical systems (4.4) and (4.6) we are just going to introduce.

Let us consider f = f(u,r) and the corresponding system (3.2) with [ = [,, (and
g1, (z,t) defined by (2.1)). Then we consider the system obtained from the previous

one replacing (aq,, 71, ) by (o, ) (and maintaining g = g;, (2,t)), i.e.:
& a 1 0 x” 0

(4.4) g =1 0 m O (7 Il I C i mz(;))
2 0 0 w ¢ 0

We denote with the apex ™ quantities referred to systems (4.4) and to the corre-
sponding modified equation (1.4). Set | = 2* in (4.4); then (4.4) corresponds to
(1.4) where we have replaced f by a suitable functions f™(u,r), i.e.

(4.5) fm (U7 ’r‘) = f(urs(n72)o‘lu/4’ T)Tfs(’n*Q)OLLu /4 ,

where ¢ = [,, — 2* > 0 so that ag — oy, = &(n — 2)ay, /4. We recall that systems
(4.4) admits a critical point (Pj2(—00),0) different from the origin and that there
is a unique trajectory, denoted by (2, (¢, |), z(t)), whose graph gives the unstable
manifold of the critical point (P32 (—00),0) in (4.4). So we can apply proposition
3.8 to (4.4) (i.e. to (1.4) where f = f™) to obtain the following.

Remark 4.4. Assume G, G4, A, with 2, < [ < 2* < [,, and consider system
(4.4) where [ = 2*. Then all the regular solutions are crossing and all the fast
decay solutions are S.G.S. with f.d. All the trajectories (x5 (t), 2(t)) of (4.4) corre-
sponding to singular solutions are such that x37 () rotates indefinitely around the
critical point (Py(—00),0) as t — —oo, possibly apart from @52 (¢, |).

Set PJ(—00) = (P;"(—00), Py*(—00)). We stress that a priori x5 (,]) —P;" (—00)
may have no zeroes or just a finite number of zeroes: this fact causes some technical

difficulties, which affects the proof of theorem 1.3 borrowed from [2].
Similarly we introduce the following analogous system:

" o 10 a 0
(4.6) gm =1 0 v 0 T I R (O
¢ 0 0 —-w ¢ 0

Now we are ready to prove theorem 2.2.
Proof of theorem 2.2. Assume A,,G, and G with 2, < [; < 2*. We stress that
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FIGURE 3. In this picture we explain the construction of the ho-
motopy HO(Z, S), in the case where :c?u (t) corresponds to the sin-
gular solution u(r, ). On the left we have a 3-dimensional sketch of
system (3.2) and of the objects involved in the construction; on the
right we have flattened the 2-dimensional manifolds W;* and rep-
resented it on a plane. Here between the z-axis and the trajectory
(zp (t),2(t)) for t < 7, we have the whole 2-dimensional manifold
W (filled with a yellow pattern). The (green) solid lines indicate
the 1-dimensional manifolds W} (7) x {2(7)} between the origin
and (xp (7),2(7)), at different values (ie. 7 = In(Z,/w), 7 =
In(Z,/w)). Again the homotopy HO(Z, S) between (x (1), 2(t))
for t < 7, and the parametrization X%(Z,,s) of the branch of
w (7p) is obtained through the projection depicted on the right.
Since at each step the homotopic curves lie on the 2-dimensional
manifold W* it follows that HO(Z,S) does not cross the curve
(xpo(t), 2(t)) for t < 7, which does not intersect W* for any ¢ € R.

the existence of a G.S. with f.d. corresponds to the existence of an intersection
between W (7) and W} (1) or equivalently of an intersection between W;"(7) and
Wi (1), for some 7 € R. Let us set ¢ = [, — 2* > 0; then consider system (4.4)
where [ = 2*: again (4.4) corresponds to (1.4) where we have replaced f by f™(u,r)
given by (4.5) and we denote with the apex ™ quantities referred to this equation
and the corresponding systems (4.4). By construction f™(u,r) satisfies G, with
It = 2% and G with [J" < I,. Moreover 0 < I, — I* = O(¢). Denote by Wy (7)
the stable manifold and by W} (1) the unstable manifold of system (2.2) obtained
from the original f; we denote by W52 (7) the unstable manifold obtained from
(4.4) where [ = 2* and by W}, () the stable manifold obtained from (4.6) where
[ = [I7", corresponding to (14) with f = f™. Set D = oy, — oy, > 0 and D™ =
apm — - > 0, it is straightforward to check that D — D™ = O(e) (in fact if f is of
type (1.2) then D = D™).

Let 7° > 0 to be fixed later and ¢* = exp[—7]; let Q™ be a point in le;m(Tb),

and correspondingly S™ = e_DmeQm € W,.™(rb). Consider the trajectory
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T (t, 7%, Q™) of (4.6), the corresponding solution u™(r) of the auxiliary equa-
tion (1.4) where f = f™, and the corresponding trajectory a3:(t, 7% S™), of
(4.4). From Remark 4.4 we see that «™ is a S.G.S. with fast decay and we can
assume w.l.o.g. that I} (t,7°; 8™) rotates indefinitely around the critical point
P™(—00) = (P;"(—00), Py*(—00)), where (P™(—00),0) is the critical point of
(4.4). Therefore x5 (t, 7%; ™) — P™(—o0) has infinitely many zeroes in (—oo, 77].
We denote by (aczzilm(t; 1), z(t)) the unique trajectory of the unstable manifold of the
critical point (P™(—00),0) of (4.4) with [ = 2, and by (x}* (t; 1), 2(t)) the unique
trajectory of the unstable manifold of (P(—00),0) of the original system (3.2). It
follows that z7¢ (t,7%; §™) — 5. (t;]) has infinitely many zeroes in (—oo,7°]. So
we have proved the following:

1) For any k € N we can find 7@ < 7° such that x5 (t,7% 8™) — 25" (t;]) has at
least 2k + 1 zeroes in [, 7Y].

The second step is to prove the following claim:

2) There is Q € Wy (t°)\ W (%) such that x;,(t,7% Q) — 2 (t;1) has at least
2k + 1 zeroes in [t%, T°].

In fact for any 0 > 0 we can choose 7° large enough so that there is R™ &
W™ (+00) such that || R™—Q™|| < 0/3. Using continuous dependence on param-
ete}s, we see that we can choose € > 0 small enough so that there is R € W}’ (+00)
such that ||[R — R™| < o/3. Then, possibly choosing a larger 7° we can find
Q € Wi (7°) such that |Q — R|| < ¢/3, too; hence we get |@Q — Q™| < o where
o =o(e,7°). We can assume w.Lo.g. that Q € W/ (7?)NRZ and Q & W} (7"), oth-
erwise infinitely many G.S. with f.d. exist and we have concluded. Let v> () denote
the fast decay solution of (1.4) corresponding to x, (t,7% Q) and let x;, (¢, 7% S)
be the corresponding trajectory of (3.2), so that § € W/ (7%). Then z, (t, 7% Q)
converges to @, (t,7%; Q™) as £ — 0 uniformly in [7%, 00). Thus for any fixed 7°
xy, (t,7% S) converges to xT%(t, 7% S™) as ¢ — 0 uniformly in [7%, 7).

Using continuous dependence on parameters and the fact that P™(—o0) tends to
P(—00) as € — 0, we see that @3."™ (t;]) — xj* (t; 1) tends to 0 as ¢ — 0 uniformly
with respect to t € [7%, 7). Using these two uniform convergence arguments and
point 1), we see that x;,(t, 7% §) — z" (t;]) has at least 2k + 1 zeroes in [7%,7°].
So @y, (t, 7% Q) — x}' (t; 1) has at least 2k + 1 zeroes in [T, 7] too, and claim 2) is
proved.

We have chosen @ € Wy (%) (and hence S € W (7)) so that that there is
71 < 7% such that z;, (7%,7%, Q) = 0. Thus the corresponding fast decay solution
v>°(r) of (1.4) has a non-degenerate zero for r = ¢™'. We denote by u®(r) the
unique singular solution of (1.4) and by 0% (2?, s, *) a parametrization of the whole
W (1%). So we can apply proposition 4.1 to conclude the following.

3) The winding number of s — % (2%, s,%) around Q is equal or smaller than —k.
Denote by V~Vf (%) the branch of W} (") between the origin and Q. Possibly
choosing a larger 7° we find that VNVl‘S (7%) is close to a segment. In fact Wl‘: (%)
is a graph on the line A3 = {(z,—(n — 2)z) | > 0} and it is tangent to AJ in
the origin; moreover Q@ = x;, (7%, 7% Q) tends to 0 as 7% — +oo. Let le (1%) be
the corresponding branch of W;? (7%), i.e. the branch between the origin and S: it
follows that

4) V~Vli (%) = V~st (T®) exp[(cu, — au, )] is close to a segment of the line AJ_.
Hence (putting together claims 3 and 4) we easily find that Wl‘i (7%) intersects
wp (7%) in at least k points, say Q7 for j = 1,...,k. In fact Wﬁu ()N w (7°) has
at least k connected components. Then x;, (¢, 7% Q7) is a homoclinic trajectory
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of (2.2) and the corresponding solution u?(r) of (1.4) is a G.S. with f.d. for any
j=1,...,k. O

Remark 4.5. We stress that, if the slow decay solution v(r,1) has a zero, then
we can apply the first part of proposition 4.1 to conclude that W;S‘(Tb) makes k
complete rotations around @y, (7%, 1).

From the construction just developed to prove theorem 2.2 we get the following
alternatives.
i) There is Q € [W} (r°)\ W(7)], and a decreasing sequence of values e (1) N\ 0
such that Wﬁ(rb) rotates around @ a finite number of times larger than k, for any
lu € (2* + Ek+1(ls); 2% + Ek(ls)).
ii) There is Q € [W (r°)\ W (%)], and a value ek (l;) > 0 such that W(r)
rotates indefinitely around @, for any I, € (2%;2* + e (ly)). '
In order to prove theorem 2.4 we need to exclude possibility ii).

Remark 4.6. Assume G, G, with 2, < [y < 2* < [, and consider the unique
singular trajectory x;! (¢,]) and the unique slow decay trajectory =y (¢,1) of (2.2).
Then, if these trajectories do not coincide, the linking number of z}* (t,)) and
xj (t,1) in the whole of R is finite.

Proof. Consider the angular number © = 0(z] (t,1) — ;2 (t,1);(0,0)) for t €
[7%,7%]. Since the angular number is a continuous function, © is finite for any given
72,7%. We can choose 7° large enough so that xj (t,1) is close to the (repulsive)
critical point P, (400) of the autonomous system (2.2) where g;_(x,t) = gl':"o(x).
Since Py, (+00) is repulsive it follows that ;! (¢,]) cannot rotate indefinitely around
it for t > 7°, so O(x; (t,1) —xp (t,1); (0,0)) is finite in [T, 4+00) too. Now switch
to (2.2) where [ = [, and consider the trajectories @7 (¢,1) and @ (t,]) and the
critical point Py, (—o00) of (2.2) where g, (x,t) = g, *°(z). Reasoning as above
and using the fact that Pj,(—o0) is attractive, we see that the angular number
0(zy (t,1) — it (t,1);(0,0)) is finite for ¢ € (—oo,7%]. Therefore we find that
the linking number of ;! (¢,) and xj (,1) in the whole of R is the sum of finite
numbers and it is finite. O

From this Remark it follows that possibility ii) can take place just if there is 6 > 0
such that (1.4) admits a S.G.S. with s.d. for I, € (24,2*) and any [,, € (2*,2* + ).

4.3. Proof of theorem 2.3. The proof of the first part of theorem 2.3 is obtained
through a perturbation argument on (1.4) where f satisfies G,, and G5 with 2, =
ls < 2* < ly. The second part of the theorem is obtained combining the first
part with the observations concerning Kelvin inversion (3.4). We begin from the
following remark.

Remark 4.7. Consider the autonomous system (2.2) where [ = 2, and go, (z,t) =
g2, (x) is t-independent and satisfies GO. There are no critical points, no periodic
orbits, and for any @ € RZ there is T(Q) > 0 such that X3 (¢,0;Q) crosses
transversally the y negative semi-axis at t = T(Q).

Proof. The non-existence of periodic orbit is a trivial consequence of Poincare-
Bendixson criterion (when a; + v # 0, i.e. [ # 2*, no closed orbit can exist).
Moreover the flow on the isocline & = 0 (i.e. A = {(z,—(n—2)z) | z > 0}), is
vertical and points downwards: here and later we think of the x axis as horizontal
and of the y axis as vertical. Using this fact and Remark 3.2, from an easy analysis of
the phase portrait we conclude that there is T'(Q) > 0 such that X», (7(Q),0; Q) =

O

0> V2. (T(Q), 0: Q) for any Q € B2.
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Now we easily get the following.

Lemma 4.8. Consider (1.4) and assume G, and G with 2, =1, < 2* <|,,. For
any Q € R? there is T(Q) > 0 such that x;,(t,0;Q) crosses transversally the y
negative semi-axis at t = T(Q).

Proof. Consider system (3.3); from F0 it follows that any trajectory can be con-
tinued for any ¢t € R. Observe that the w-limit set of (&, (¢,0; Q), {(t)) is contained
in the plane ¢ = 0. Then the Lemma is an easy consequence of Remark 4.7. (|

If G holds with I; = 2,, from Lemma 4.8 we see that there is T* = T*(l,,) such
that y' (T*(lu),}) <0 ==} (T,]). We recall that the unstable manifold W (T™)
is a smooth path that connects the origin with zy (7, ). So we can find p>0
such that each trajectory @, (t,T*; Q) of (2.2), crosses the y negative semi-axis at
t =T(Q), whenever Q € W (T™) and [|Q — z* (T*,1)|| < p. Moreover T(Q) is
continuous, due to the transversality.

From now on we consider [,, > 2* fixed and we let [ vary in [2,, 2*), so we stress
the dependence on I, of the objects introduced. Set z* = @7 and let o (2%, 8, %;15)
be a parametrization of the unstable manifold W} (T) such that o*(2*,0,%;1s) =
(0,0) and 0*(2*, 1, %;l5) = x;* (T, ). Using continuous dependence on parameters
we obtain the following Lemma which is the generalization of Lemma 5.2 in [2].

Lemma 4.9. Assume G, and G and fix 1, > 2*. Then, there are B € (0,1)
(independent of 1) and (1) > 0, such that for any ls € (2.,2. + €3(l.)) the
trajectory oy, (t,T; Q) is a crossing solution whenever Q € o¥(z*,s,%;1l5) and s €
(B,1]. Correspondingly let u(r; o) denote the regular solution such that u(0;a) = «
and Lu(0;0) = 0; then there is D > 0 (independent of l,,) such that u(r;a) is a
crossing solution for any a > D.

We wish to stress that Lemma 4.9 might also be proved following the ideas of
the proof of Lemma 5.2 in [2], but we have chosen to give a different proof of
“dynamical” type. From Lemmas 3.5 and 4.8 we get the following.

Lemma 4.10. Assume G, and G5 and fix 1, > 2*, Then, there is €3(l,,) > 0 and
A € (0,1) (independent of 1), such that for any ls € (24,2« +€&(ly,)) the trajectory
xy, (t,T*;Q) is a crossing solution whenever Q € o"(z*,s,%;ls) and s € (0, A).
Correspondingly there is d > 0 such that u(r;a) is a crossing solution for any
0<a<d.

Proof of theorem 2.3. Set &y = min{ed; €4} > 0, and assume G,, and G, where
2, < ls < 24+ &0(ly) < 2% < 1, so that the hypotheses of Lemmas 4.9 and 4.10
are verified. Consider the unstable manifold W;* (T™;1s) and its parametrization
o"(z*,s,%;1s): we have shown that the trajectories x;, (t,T*; Q;ls) correspond to
crossing solutions of (1.4) whenever Q € o%(z*, s,%;l5), and s € (0, A) U (B, 1).

Consider now system (4.6) where ! = 2,, and the corresponding equation (1.4)
obtained replacing f by the function f™ defined as follows

(4.7 F(u,r) = furm ™20 p)pm(nm2ma),

and observe that f™ satisfies G,, with | =17 < [,, (and obviously G5 with [ = 2,.).
Let W};.;™(T™*) denote the unstable manifold of the modified problem with f = f™

m

given by (4.7) and let @ " (¢,)) be the trajectory of (2.2) corresponding to the
unique singular solution of such a problem. Let o™ (z*, s, *) be a parametrization
of Wy (T*), such that o“™(z*,0,%) = (0,0) and ¢“™(z*,1,%) = apm (T*, ).
From Lemma 4.8 it follows that any regular solution of the modified equ;tion (1.4)
where f = f™ is a crossing solution.
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By construction, for any Q = o™ (z*, s, *) there is T™(Q) € R such that the
trajectory (zpm  (t,T%;Q),z(t)) of (4.4) crosses transversally the x = 0 plane at
t=T1T"(Q), whenever 0 < s < 1. Let 0 < AJ* < BJ® < 1 and denote by K the
compact set

K :={c""(z%,s,%) | A < s < By}

Denote by ¥ = sup{T™(Q) | Q € K} and observe that ¥ is positive and finite.
Let us choose A° and B so that 0 < A° < A < B < B? < 1; then

Wi (%) = {o"(",5,1:1.) | A° < s < B},

is a compact connected set of W} (T*). Let @ be a point and C a set; we de-
note by B(Q, p) the open ball centered in @ of radius p > 0, and by B(C,p) =
UgeaB(Q, p). For any p > 0 we can choose go(l,) > 0 and Af* < By such that
W (T*) € B(K, p), whenever I, € (2.,g0(ly)).

Consider the trajectories x;, (t,7*; Q) of the original problem (2.2) where Q €
B(K,p). Using a uniform continuity argument, and possibly choosing a smaller
eo(ly) > 0, we can assume that p > 0 is small enough so that the trajectories
xy, (t,T*; Q) cross the y negative semi-axis whenever Q € B(K, p). So the regular
solutions u?(r) of (1.4) corresponding to @y, (t,7*; Q) where Q € W (T*) are
crossing solutions, whenever 2, < Iy < 2, + ¢9(l,). Thus, if we choose g¢(l,) <
€o(ly), we obtain that all the regular solutions of the original problem are crossing
solutions and the first part of the proof of theorem 2.3 is concluded. I.e. for any
ly, > 2* there is €g(l,,) > 0 such that (1.4) admits no G.S. with either slow or fast
decay, neither S.G.S. with either slow or fast decay, whenever I; € (24,2, +¢c0(ly))-

Applying Kelvin inversion to a f satisfying G, and G with [, > 2* and I €
(24,2, + €0(l,)), we obtain a function f satisfying Gy, and G with L, € (2,,2*)
and L, > My = 2(n—1) + m where L, and L, are given in (3.8) and
viceversa (we recall that, according to (3.8), Kelvin inversion brings 2, into co).
Using (3.8) it is easy to check that My can be written as a function of Ls. So
assume f satisfies G, and G5 with I € (24,2*) and [,, > My(ls). Applying Kelvin
inversion we pass from such an f to f satisfying G, and G¢ with L, > 2* and
Lg € (24,24 +¢9(Ly)). So, using the first part of the theorem (already proved), the
corresponding equation 3.5 is such that all the fast and slow decay solutions, as well
as all the regular and singular solutions, admit a non degenerate zero; hence for the
original equation (1.4) (satisfying G, and G4 with I; € (2,,2*) and 1, > My(l))
all the regular and singular solutions, as well as all the fast and slow decay solutions
have a non degenerate zero, so the proof of theorem 2.3 is concluded.

4.4. Proof of theorem 2.4. We stress that theorem 2.4 is the analogous of the-
orem 1.3 in [2]. In fact we could prove it simply by adapting to this context the
proof of Bamon et al. However there is a point in their proof which is not very
clear to us so we prefer to modify it. The problem derives from the following
fact. The topological argument used by Bamon et al. in Lemma 3.1 (analogous to
Lemma 4.3 of this paper) is developed assuming that the trajectories z3: (¢, Q, 7)
rotates indefinitely around the critical point Py*(—oc0), whenever Q € W3 (7).
However there is one solution of (4.4) with [ = 2*, 32" (t,]), which lies on the
unstable manifold of (P32 (+00),0). This trajectory may be such that the difference
x5."(t,1) — PI"(—00) has a finite number of zeroes or none. So the topological ar-
gument developed in subsection 4.1 works for any solution v>°(r) different from the
solution u(r,|) corresponding to the singular solution @y (¢,1) (which converges
uniformly to x5 (,]) for ¢ <0).

So we have no problems when we want to prove theorem 1.1, or its analogous the-
orem 2.2, since we can choose any fast decay solution v°(r). However in the proof
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of theorem 1.3 u® and v™ are assumed to be specific solutions, respectively the
singular and the slow decay solution of (1.4). So we prefer to refine the argument
needed to prove the existence of k zeroes of u®(r) —v°(r), to prevent the trajectory
corresponding to v™ to be close to x5.™ (t, ).
We begin the discussion on the existence of S.G.S. with f.d. and of G.S. with s.d.
considering the following hypotheses.
B,: Assume G, G5, A, with 2, < I < 2* < [,. The solution (x5:™(t,{
), 2(t)) of (4.4) with | = 2* crosses transversally the = 0 semi-plane.
B,: Assume Gy, G4, As with 2, < Iy < 2* < [,. The solution (x5 (¢,1
),¢(t)) of (4.6) with | = 2* crosses transversally the 2 = 0 semi-plane.
We give a stronger result, proposition 4.11 below, which requires B, or Bg, and a
weaker result which does not, theorem 2.4. These hypotheses seem to be generic:
e.g. B, is verified when a two dimensional object, W%’Lm(T), does not intersect

a one dimensional object in R3, i.e. the stable manifold of the critical point
Py (—00), and similarly for B,. However it is difficult to prove that B, and
Bg are actually verified. In fact it is possible, and straightforward, for the nonlin-
earities f discussed in [15], i.e. f(u,r) of type (1.2) and k(r) = max{r®", %"} or
f(u) = max{u? ~!, 4% ~'}. Insuch a case it is in fact enough to observe respectively
that xo:™(t,]) = Py (—o00) for —t large enough, and x5 (t,1) = Py (+00)
for ¢ large enough, and to make some trivial geometrical observations. So for these
non-linearities proposition 4.11 gives an alternative (but more difficult) proof of the
existence of G.S. with s.d. and of S.G.S. with f.d.

Proposition 4.11. Assume A, G5 and G with 1, > 2* and Bs. Then there is
an increasing sequence 13 (l,) 2% as j — oo such that (1.4) where Iy = ri(l,)
admits a (unique) S.G.S. with f.d.

Analogously assume Ay, Gy and Gg with 2, < lg < 2*. Assume further By,.
Then there is a decreasing sequence 1 (1) \, 2* as j — oo such that (1.4) where
L, = 1(ls) admits a (unique) G.S. with s.d.

This proposition is similar to theorem 2.4, but it requires the hard to be proved
hypotheses B, and Bs. However it allows to specify the type of special solution
obtained. To prove such a proposition we need the following result, which follows
from continuous dependence on parameters.

Lemma 4.12. Assume Ay, Gy and Gg with 2, < Iy < 2*. Assume further B,,.
Then there is €.(ls) > 0, such that whenever 2* < l, < 2* + €,(ls), the unique
singular solution u(r,]) of (1.4) is a crossing solution, i.e. there is a unique value
R > 0 such that v'(R,|) < 0 = u(R,]). Moreover R depends continuously on l,
and l.

Analogously assume Ag, Gs and G, withl, > 2* and Bs. Then there is e.(l,) >
0, such that whenever 2* — e,(l,,) < ls < 2*, the unique slow decay solution v(r,?1)
of (1.4) is a crossing solution, i.e. there is a unique value R > 0 such that v'(R,T
) < 0=uv(R,1); again R depends continuously on l,, and .

To prove both proposition 4.11 and theorem 2.4 we have to repeat the topological
argument developed in subsection 2.1 and 2.2.
Proof of proposition 4.11. We just prove the existence of S.G.S. with f.d., since the
existence of G.S. with s.d. is analogous and can be deduced by Kelvin inversion. So
we assume Ag, G5 and G, with [, > 2" and Bs. From Lemma 4.12 we know that
the unique slow decay solution v(r, 1) of (1.4) has a non-degenerate zero, whenever
ls € (2 —e.(1y),2%), so no S.G.S. with s.d neither G.S. with s.d. can exist. It
follows that the unique singular solution (52" (¢, 1), ((t)) of the modified problem
(4.6) has a periodic orbit as a-limit set, so it rotates indefinitely clockwise around
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FIGURE 4. Proof of the existence of a S.G.S. with slow decay.
The angular number O(Z,l,) indicates the rotation of the mani-
fold W (7) around the point x} (1) = x}* (7, ), corresponding to
the unique singular solution wu(r,|) of (1.4). ©(Z,ls) jumps from
the interval (2 — 1/4;2) to the interval (3 — 1/4;3), violating the
continuity of ©(Z, ), thus driving to a contradiction.

the critical point (Pax(+00),0) (we stress that to obtain such a conclusion By is
required).

Consider the unique singular solution wu(r, ) of the original problem (1.4) and
the corresponding trajectories (xj (t,1), 2(t)) of (3.2) and (x} (¢, 1), (()) of (3.3).
Fix 7 € R, since Pj,(+00) — Pax(+00) as [y — 2%, for any & € N we can
find £, > 0 small and 7° > 0 large such that x} (t,)) rotates clockwise around
P, (+00) at least k times, for ¢t € [r%,7%], whenever Iy € (2* — ex(l,),2%). So,
possibly choosing a smaller €5, we see that z}' (¢,]) — 27 (¢,1) has at least 2k + 1
zeroes for t € [72,7°]. Let us consider the corresponding trajectories of (3.2), i.e.
(x} (t,4),2(t)) and (zf (t,1),2(t)): obviously z}' (¢,1)—xj, (¢ 1) has at least 2k +1
zeroes for t € [7%, 7°] too.

We fix the parameter [, while we allow the parameter [ to vary in the interval
(24,2%). So we stress the dependence on [, of the objects we introduce: i.e. we de-
note the stable manifold Wy’ (z) by W}’ (z,1;) and the singular solution xj! (¢, 1) by
xp (t,);1ls). From Lemma 4.12 we already know that no S.G.S. with s.d. may exist
for I5 € (2* —€.(ly),2%), hence the singular solution u(r,]) cannot have slow decay
(note that we can and will assume e (l,,) < €4(l,), and this is certainly possible if
k is large enough, thanks to Remark 4.6).

Let Is € (2% — er(ly),2%); assume first that u(r,]) is a crossing solution. Let
0%(z,-, % 1) = [0,1] — R? be a parametrization of Wy (In(z)/w;l,) such that
0°(2,0,%;15) = (0,0) and 0°(z1,1,%;15) = @7 ([In(2)/w], 1;1s), see subsection 4.1.
We can apply proposition 4.1 to conclude that the winding number w(Z,l) of
o%(Z,-,*;1s) around xp (T,]) is at least k, for any I5 € (2* — ex(l,),2*) and any
T=n(2)/w < 7,

Moreover from theorem 2.3 we know that there is €¢(1,,) such that for I5 € (2,2, +
o0(ly)) no G.S. with f.d. exist, hence the winding number w(Z; 1) is 0 or 1 when-
ever [ € (2* —eo(ly),2*). Therefore the winding number w(Z, 1) is less than
2 for any l; € (24,2« + €0(l)) and it is at least k for I; € (2* — e (1), 2%)
and k large enough. Hence we have the following two possibilities:

i) there is a sequence of values 7* ' 2* such that for I, = r* the singular solution
u(r,]) is not a crossing solution,

ii) there is 6(1,,) > 0 such that u(r,]) is a crossing solution for I, € (2* — d6(1,,),2%).

X4(T,1)
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In the former case no S.G.S. with s.d. are allowed for 0 < 2* — [, < &, so for
Iy = r* the unique singular solution has to be a S.G.S. with f.d and we have done.
So assume for contradiction the latter; possibly changing slightly the values of the
parameters £, we can assume that w(Z, l,) equals exactly k for I, € (2" —¢1(l,,), 2" —
ert1(ly)) whenever 0 < Z < 2% We focus on I, € [2° — ex_1(lu),2* — ext1(lu)].
We recall that the unique slow decay solution v(r, 1) has a unique zero, say R(l) =
eT () Let us choose Z = min{e®T") | I, € [2* —e_1(lu), 2* —ex11(lu)]} and note
that Z > 0. By construction the point 0°(Z, 1;15) = xj (7,1) lies in the quadrant
x < 0 < y (we recall that the semi-line {(x,—(n — 2)x) | « < 0} is part of the
unstable manifold, so it is invariant for the flow and cannot be crossed). It follows
that the angular number ©(Z;1;) of 0°(Z, ;1) around x;, (T, ) satisfies

k—1/4<0O(Z,1,) <k  whenl, € (2* —ep_1(lu),2* — ex(ly))

(U8) L 8/4<O(Z1) <k+1 whenl, € (2 —ex(ln), 2* — cxin(la))

see figure 4. But this contradicts the continuity in s of the angular number ©(Z, l).
So we have a value 7% (1,,) € (2* —ex_1(ly), 2" —ery1(ly)) such that u(r,|) is a S.G.S.
with f.d. for I, = r*(1,). O

Remark 4.13. From the proof it is in fact clear that we can assume 7%(l,) = 2* —
ek (ly), i.e. we have a S.G.S. with f.d. at the value for which the winding number
w(ls, Z) increases. So r*(l,) separates the values of I, for which we have at least
k G.S. with f.d. from the ones for which we have at least k + 1 G.S. with f.d., see
picture 4.

As we have already stressed it is difficult to verify hypothesis B,, and Bg, even
if they seem to be generic. However the relevance of proposition 4.11 lies on the
fact that it is the first step to prove theorem 2.4.

Lemma 4.14. Assume Ag, G and G with [, > 2*. Consider the unique solution
(3" (8, 1), C(1)) of (4-6) asymptotic to Pyr(+00) as t — +oo, the corresponding
tragectory (mf;mm(t,T),z(t)) of (4.4), and the corresponding solution v™(r,1) of the
modified equation (1.4). Then, if either
a) v™(r, 1) is a G.S. with s.d. or
b) v™(r,1) is a S.G.S. with s.d. (i.e. ;" (t,1) — Pir(+00) ast — —o0)
then there is a sequence 13 (l,) 7 2* such that the original problem with I, =
ri(l,) admits either a G.S. with s.d., or a S.G.S. with f.d. or a S.G.S. with s.d.
Analogously assume Ay, G and Gs with 2, < Iy < 2*. Consider the unique
solution (x32""(t,1),2(t)) of (4-4) asymptotic to Pyr(—o0) as t — —oo and the
corresponding trajectory (:cz,,’zm(t,i), C(t) of (4.6), and the corresponding solution
u™(r, ) of the modified equation (1.4). Then, if either
c) u™(r, ) is a S.G.S. with f.d. or
d) xp" (¢, 1) = Pl(+00) ast — +oo (i.e. w™(r,l) is a S.G.S. with s.d.)
then there is a sequence 13 (ls) \, 2* such that the original problem with 1, =
1 (ls) admits either a G.S. with s.d., or a S.G.S. with f.d. or a S.G.S. with s.d.

Proof. Assume G,, G5 with [, > 2* and Ag; assume further that a) holds.
Consider the unique singular solution a:li%’lm(t,i) of system (4.4) where | = [
and the corresponding solutions u™(r,]) of (1.4) and x3.""(¢,]) of (4.6), and set
P} (+00) = (P (+00), PJ*(+00)). Since u™(r,|) does not coincide with v™ (r, 1),
it follows that z5:™(¢,]) — P™(+00) has infinitely many zeroes in any interval of
the form [7,, +00), see Lemma 3.9.

Once again we fix [, and we let [5 vary. So let (xj (¢,1;l5),((t)) be the unique
trajectory of (3.3) asymptotic to (P, (+00),0), and let v(r,1;l5) and (zf (¢,7
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ils),z(t)) be the corresponding singular solution of (1.4), and the correspond-
ing trajectory of (3.2). If @7 (t,1;0s) = =}’ (t,1;ls), there is a S.G.S. with s.d.
and we have done; so we assume that these trajectories do not coincide. Let
P, (+00) = (Py(+00;l5), Py(+00;1s)). We can find e > 0 and 7, large enough
so that zj (t,];1s) — Pr(+00;1s) has at least 2k + 1 zeroes in [7%,7%], whenever
I, € (2 — ex(ly),2%). Then, possibly choosing a smaller e, > 0 we see that
x (t, 15 1)~ (t, ;1) has at least 2k+1 zeroes in [T, 7], when I, € (2*—¢x(1y), 2*)
too. As in proposition 4.11 we can assume w.l.o.g. that the linking number of
zj (t,4;1s) and x (¢, 1;15) is exactly k when [; € (2° — ex(lu), 2" — exy1(lu)) for
te[re, 7.

Assume for contradiction that both v(r, 1; 1) and u(r, |; ls) have a non-degenerate
zero for any I € (2" —er—1(ly),2* —ek+1(ln)). Repeating the argument of proposi-
tion 4.11 we find a contradiction; hence for Iy = 7¥(1,,) = 2* —ey(1,,) either v(r, 1;1,)
is a G.S. with s.d. or a S.G.S. with s.d., or u(r,|;ls) is a S.G.S. with f.d. and the
proof of the Lemma in case a) is concluded.

Now we assume b), so that the trajectory (xg: " (t,1),((t)) is asymptotic to

(PR (+00),0).
Consider the autonomous system (2.2) where [ = [ and g, (z,t) = gltoo(ac). Let
Q € B(P,(+0),p)\ {P,(+00)} and consider the trajectory Xj, (t,7;Q,+00).
Since P, (400) is repulsive, for any k € N we can choose p > 0 and 5(p) > 0 such
that X;_(t,7; Q,+00) rotates at least k times around P, (4+o00) for t > 7, before
getting out from B(P, (+00),/p), whenever I5 € (2* — §x(p), 2%).

Now we fix [, and we let I, vary. Since x5 (t,1) = x5 (¢, 1), for any p > 0,
7 > 0 we can find g > 0 such that xj* (7,1;15) € B(zj (7, 1;ls), p) whenever [; €
(2" —ep(lu),27). I xpt (7,);1s) = xf (7, 1;1s) then the singular solution u(r, ;1)
is a S.G.S. with s.d. and we have done. Otherwise, using continuous dependence
on parameters of (3.3), we see that we can choose 7 > 0 large enough p > 0,
0 < ex(p; T3 lu) < Ok(p), such that @} (¢, 1) is in B(P,(+00),p) for t = 7. So we
can also assume that x}' (¢,]) rotates around (xj (,1) exactly k times clockwise,
for t > 7. Hence the linking number of (zj(t,]),((t)) and (zj (¢,1),¢(t)) for
t € (T,+00) is —k whenever I € (2* — e (1), 2%).

So we can find 7 < 7°, 7° large enough so that x*(t,|) — «§ (¢,1) has at
least 2k + 1 zeroes, whenever s € (2* — €4(l,), 2*). Now assume for contradiction
that u(r,|) and v(r, 1) are crossing solutions. Applying again proposition 4.1 and
repeating the reasoning developed for the proof of point a) we reach a contradiction
and we conclude the proof.

The proof of Lemma 4.14 when A,,, G, Gs and either ¢) or d) are assumed,
can be developed reasoning in the same way but reversing time, or directly using
Kelvin inversion, see subsection 3.2. O

Now the proof of theorem 2.4 is a straightforward consequence of proposition
4.11 and Lemma 4.14.

4.5. Discussion of theorem 2.5, and consequences for the Dirichlet prob-
lem in the ball. Flores in [11] discovered the resonance phenomenon described
in theorem 1.4 which fits this context perfectly too. In [15] we have modified its
proof very slightly keeping all the main ideas. Here we just sketch it remanding the
interested reader to [11] for details. The proof developed by Flores is of topological
flavour and is rather general, so it may work also in different contexts.

Consider (2.2) and assume G,, and G so that we can construct the manifolds
W (r) and W*(7). We start from claim a) and we assume first that a G.S. with s.d.
exist. Such a solution corresponds to the trajectory xj (t,1) of (2.2) since it has
slow decay. Moreover Q(7) := @} (7,1) belongs to the unstable manifolds W;*(7)
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(changing with 7), for any 7 € R; we stress that Q(7) is in fact in the interior
of Wj(7) since it does not coincide either with x;* (7, ), nor with the origin. We
want to prove the existence of infinitely many points Ry € [W}" (1) "W} (7)]. Then
the trajectories x;, (t,7; Ry) are homoclinic to the origin, so they correspond to
solution uy(r) of (1.4) which are G.S. with f.d.

The argument is based on the following facts.

(1) The critical point Py, (+00) of the autonomous system (2.2) where g;_ (z,t) =
glt_oo(a:) is an unstable focus (this holds whenever I € (o4, 2*)).
(2) For any 7 € R the manifold W}*(7) is a smooth path connecting the origin
with xj* (7,{), and the manifold W} (7) is a smooth path connecting the
origin with Q(7) = (7, 1). .
(3) There is a G.S. with s.d. if and only if the trajectory @7 (7,1) € W;!(7) for
any 7 € R. There is a S.G.S. with s.d. if and only if 7 (¢,1) = =} (¢,]) for
any t € R.
From point 1 we see that the stable manifold W}° (+-00) is a spiral rotating indefi-
nitely around Py, (4+-00) and which connects such a point with the origin. Then from
point 2 it follows that we can choose 7 large enough so that W (7) is a spiral rotat-
ing indefinitely around Q(7) := xj (7,1). From point 3 we see that Q(7) € Wi (r).
Let U be a neighborhood of Q(7) and denote by W}*(7) the connected component
of W(1) NU containing Q(7). Since W(7) is a C' manifold we can choose U
small enough so that W;:(T) is C! close to a segment. So it is easy to realize (use
e.g. polar coordinates centered in Q(7), see [11] for details) that W*(7) intersects
the spiral W}’ (7) infinitely many times. Thus we get the existence of infinitely
many G.S. with f.d.
Assume now that (1.4) admits a S.G.S. with s.d., i.e. wu(r,)) = v(r,1) for any
r > 0: this is a very degenerate case corresponding to the intersection of two
one-dimensional objects in R3, however we cannot exclude this possibility as an al-
ternative to the other “rare” solutions in theorem 2.4. In such a case, as observed in
[11], the unstable manifold W;*(7) is a spiral that winds around ;! (7, |) clockwise,
while W}’ (1) is a spiral that winds around xy (7,71) counterclockwise. So repeating
the previous argument we find again infinitely many intersections between VT/lZ (1)
and W (1), and we get infinitely many G.S. with f.d.; so assertion (a) is proved.
Assertion (b) is completely analogous and might be obtained using again Kelvin
inversion.

Assertion (c) follows observing that this topological argument is someway robust.
So if we perturb the system (changing the values of a; and ;) the manifold W (7)
is a spiral, but its center is not anymore a point Q(7) € W;(7) but it is close to it.
So a large number of (transversal) intersections between W (7) and W (1) persist:
so we still have a large number of G.S. with f.d.

From Remark 3.3 and the discussion of theorem 2.5 we get the following, see
also [10, 15].

Proposition 4.15. Assume G, and Gs with 2, <l < 2* < l,. Assume further
that ls € (0, 2%) and that there is a G.S. with s.d. u(d,r), then there is a sequence
d; — d such that u(r;d;) is a G.S. with f.d. Analogously assume that I, € (2*,0%),
and that there is a S.G.S. with f.d. Then there is a sequence d; — +o0o such that
u(r;d;) is a G.S. with f.d.

We see now briefly which are the consequences of our analysis for the Dirichlet
problem in the ball. Assume G,, and G with 2, < l; < 2* <, and let u(r;d) be
the regular solution of (1.4) with «(0;d) = d. It is easy to check that the set

(4.9) C :={d > 0|u(r;d) is a crossing solution }
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is open. From Lemma 3.5 we also know that there is D > 0 (depending on I, I
and the type of non-linearity f chosen) such that (0, D) C C. Denote by R(d) the
first zero of u(r;d): using continuous dependence on initial data we find that R(d)
is continuous on C. Furthermore from Remarks 3.1 and 3.3 we get R(d) — +o0
as d — 0. Let v(r) be the unique singular solution and R* its first zero (we set
R* = 400 if vis a S.G.S.), then R(d) — R* as d — +oo: this follows using Remark
3.3 and continuous dependence from initial data. Finally note that, if u(d*,r) is a
G.S. then R(d) — +00 as d — d*. Using these observations we find the following.

Proposition 4.16. Assume G, and G5 with 2, < l, < 2* < 1,. Then there are
p2 > p1 such that the Dirichlet problem in the ball of radius R for (1.4) admits no
solutions whenever 0 < R < p1, at least two solutions for R € (p1, p2) and at least
one for R > ps.

Moreover assume that there are exactly k G.S. with f.d. (or infinitely many of
them). Then there are pg < p1 < p2 < ... < pr < o0 (respectively an increasing
sequence py — 00), such that the Dirichlet problem in the ball of radius R admits
no solutions for 0 < R < pg, at least 2j+1 solutions for any R > p; forj =0,...,k
(respectively no solutions for 0 < R < pg, at least 2j + 1 solutions for any R > p;
forj eN).

5. APPENDIX

5.1. The technical hypotheses A/ and A’. In this subsection we always assume
that f is of type (2.6) and we prove proposition 2.6. Le. we show that, in order
to prove theorems 2.2 and 2.4, we can replace the technical requirement A, by the
weaker assumption A/, and Ag by A’. In fact such assumptions are needed to
prove propositions 3.8 and 3.9. So we just need to reprove those propositions with
these modified assumptions, then it is straightforward to check that the proofs of
theorems 2.2 and 2.4 go through without further changes.

When f is of type (2.6) we can rewrite (2.4) for the auxiliary system (2.2) as
follows:

d
il @ (5710 = O (@ (.7:Q).) =

_ Z{ @ (t TvQ)} ;lt{kl( e 2(2*—qi)/(2*—2)t:|}

0
G (@2 (4,75 Q). 1) =

for any Q@ € R2 and any ¢,7 € R. So, assume G,, and consider system (4.4) and
the modified equation (1.4) with f = f™ as in (4.5). Let @™ (r) be a solution of the
modified equation (1.4) with f = f™ and let Z3%(¢,7; Q™) be the corresponding
trajectory of (4.4); integrating by parts we get

HQ*(iL’2*(t T7Qm / 8t :l:z*(S T7Q ) )

:é{"_”(r)[um ()] _q/ T _l‘i[ (S)]ds}

whenever Q™ € W,2™ (7). So if A/, holds, as long as La™(r) < 0 < @™(r), we
find Ho« (Z5%(t, 7;Q™),t) > 0, where r = e’. Then the proof of proposition 3.8,
and consequently of theorems 2.2 and 2.4 goes through without further changes.

To reprove proposition 3.9 we need the following well known observation which
holds whenever f(u,r) > 0.

Remark 5.1. Assume that the solution v(r) of (1.4) is positive and decreasing for
r > R. Then v(r)r"~?2 is increasing for r > R.
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Assume G and consider system (4.6) and the modified equation (1.4) with
f = f™asin (4.7). Let v™(r) be a fast decay solution of the modified equation
(1.4) with f = f™ and let 3 (¢, 7; R™) be the corresponding trajectory of (4.6)
where R™ € W5." (7). Assume that v™(r) is positive and decreasing for r > R.
From remark 5.1, integrating by parts we find
+oo o

Hor @2 r R0 == [ 261 (@ (5.7 R™), 5)ds =
t

J i —m n—21q" i +oo J —m n—2v1q'—1 d i I
:;{JJrv (r)[o™ (r)r" 7] +q/r JHH(s)[0™(s)s" )] d—s[v (s)s )]ds}

So Ha«(Z5%(t, 73 R™),t) is positive if A’ hold and r = ¢ > R. Then again the
proof of proposition 3.9, and consequently of theorems 2.2 and 2.4 goes through
without further changes. We stress that in fact this second part of the proof could
be obtained also directly from Kelvin inversion.

5.2. Applications. Here we give some examples of non-linearities f to which our
results apply. Assume that f is of type (1.2), ¢ > —2 and set A, := (n — 2)[q —
28=1] > \* = 252[g— 2] Assume further that k(r) is a Lipschitz function and
that there exist A > 0, B > 0, —2 < §* < A\* < §° < A, and w > 0 small enough
such that

hmr—mk(r)rigu = A7 limr—>+ook(7")7"765 = B,

(5.1) lim, ok'(r)r!=% =0, lim,_ ook (r)r't® =0,

then from a straightforward computation we see that G,, and G are satisfied, with
Ly =255 and I, = 25+ Note that if 6" = ¥ := 24=2) or §* = 3, = 2=)
then G, and G hold respectively with [, = ¢* and I = o.. Soif (5.1) holds we can
apply theorem 2.3 and conclude that, given A* < 6% < A, there is n(6°) > 0 such
that (1.4) admits no G.S. with either fast or slow decay and no S.G.S. with either
fast or slow decay whenever 6% € (—2; —2 + ng(0%)). Similarly given —2 < §%* < \*
there is €9(d") > 0 such that (1.4) admits no G.S. with either fast or slow decay
and no S.G.S. with either fast or slow decay whenever 6° € (A, — £0(0%), Ax).

Moreover if k(r)r—0% is strictly increasing for r small and Ji (1) > 0 for any
r > 0 then A/ holds; thus, when (5.1) is satisfied we can apply theorem 2.2. ILe.
if we fix 6° € (A*; ), then for any integer & > 0 there exists €x(0°) > 0 such that
(1.4) admits at least k G.S. with f.d. whenever 6" € (A\*—¢j(d°), A*). Moreover, via
theorem 2.4, we also get the existence of a sequence of values 7¥(5%) , A* such that
(1.4) with 6% = 7#(5*) admits either a G.S. with s.d., or a S.G.S. with f.d. or a S.G.S.
with s.d. In fact for k large enough we can also assume that r%(§%) = \* — 1,(6%).
Moreover if we also assume that §° € (\*;X,), when §* = r¥(5%), we can apply
theorem 2.5 to conclude the existence of infinitely many G.S. with f.d. and the
persistence of a large number of them for small variations in the parameters.

Similarly if k(r)r~% is strictly decreasing for r large and JZJ:(T) < O0foranyr >0
then A’ holds; hence, when (5.1) holds we can apply theorem 2.2. Thus for any
integer k > 0 there exists €, (%) > 0 such that (1.4) admits at least & G.S. with f.d.
whenever 0° € (A*, \* + €,(6*)). Then, via theorem 2.4, we get the existence of a
sequence of values RF(3%) \, \* such that (1.4) with §° = R¥(6*) admits either a
G.S. with s.d., or a S.G.S. with f.d. or a S.G.S. with s.d., and for k large enough
we can also assume that RF(6%) = A\* + ¢,(6"). Moreover for §* € (¥*;\*), and
5% = R¥(6), via theorem 2.5 we find infinitely many G.S. with f.d. a large number
of which persists for small variations in the parameters.

We emphasize that if k(r)r—%+ is increasing for any r > 0 (strictly in some
interval) then J; (r) is positive for any r > 0, and if k(r)r—% is decreasing for any
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r > 0 (strictly in some interval) then J;"(r) is positive for any 7 > 0. So we can
apply our construction e.g. to a function f of type (1.2) where k(r) is of type

J
(5.2) k(r) = Ar" + Z Cir® 4+ Bro

i=1
and A, B are positive constants C; > 0, and —2 < 6 < A* < 6° < A, and
5t € (6%,6%) for any i = 1,...,j. Here again the leading parameters [, and I
are determined just by ¢ and §° respectively. In such a case theorems 2.3, 2.4,
and 2.5 give results which have not appeared previously in literature at all (to the
best of our knowledge), while theorem 2.2 has already been proved via variational
techniques in [1].

Our results can be applied also to functions f of the form (2.6), i.e.
j .

(5.3) flusr) = K (r)uy

=1

q'-1

which in fact are not discussed in literature in the spatial dependent case. Set

¢t = Z(Zj:g ) >0, 9t = % <0. Assumel that the functigns kt(r) are positive
and, for simplicity, that the limits lim,_ok*(r), lim,,ook"(r) are positive and

finite for any ¢ = 1,...,7. Then define

hi(r) = ki(r)rci , and hi(r) = ki(r)r”i
for e =1,...,j and assume that there is @ > 0 small enough so that
dk*, | dk’ | i
im — CHl-= _ )= lim — n'+1+w
Th_I% o (r)r 0 7'115{100 o (r)r

for i = 1,...,4; then G, and G4 hold with I, = ¢/ and I, = ¢'. Assume further
2, < q' <2* < ¢, and ¢; < gi41, for i =1,...,5 — 1; then we can apply theorem
2.3; so if we fix ¢* for any i > 2, we can find g¢(¢’) > 0 such that (1.4) admits
no G.S. neither S.G.S. (with either fast or slow decay), for ¢* € (24,2, + €o(¢’)).
Similarly if we fix ¢* for i < j — 1, we can find No(q') > 0 such that (1.4) admits
no G.S. neither S.G.S. (with either fast or slow decay), for ¢/ > No(q!).

Now assume 2, < ¢ < 2* < ¢/ for any i = 1,...,5 — 1. If the functions k’(r),
and h'(r) are increasing in r for any r > 0, for i = 1,...5 — 1, then A!, holds. So
we can apply theorem 2.2 and 2.4; i.e. if we fix ¢* € (2,;2%) for i < j — 1, we see
that for any & > 0 there is £(¢') > 0 such that (1.4) admits at least k& G.S. with
f.d. whenever ¢/ € (2*;2* +¢x(q')). Moreover there is a sequence 7*(g') \, 2* such
that (1.4) with ¢/ = r¥(¢') admits either a G.S. with s.d. or a S.G.S. with either
f.d. or s.d. (again we can also assume that 7%(q') = 2* + ex(q')). Moreover if
q' € (04,2*) then we can also apply theorem 2.5 and we see that for ¢/ = r¥(q") we
also have infinitely many G.S. with f.d. a large number of which persist for small
variations in the exponents ¢* and (.

Analogously assume that 2, < ¢! < 2* < ¢ < ¢/ foranyi =2,...,5—1. If
the functions k!(r), and Bi(r) are decreasing in r for any r > 0, for i = 2,...7,
then A’ holds, and we can apply theorem 2.2 and 2.4. So let ¢* > 2* be fixed,
for i > 2; we see that for any k > 0 there is £(¢7) > 0 such that (1.4) admits at
least k G.S. with f.d. whenever ¢! € (2* —e1(¢?); 2*). Moreover there is a sequence
RE(g7) ~ 2* such that (1.4) with ¢* = RF(¢’) admits either a G.S. with s.d. or
a S.G.S. with either f.d. or s.d. Moreover if ¢/ € (2*;0*) then we can also apply
theorem 2.5 and we see that for ¢! = R¥(¢’) we also have infinitely many G.S.
with f.d. a large number of which persist for small variations in the exponents ¢*
and 1. These results extend to the spatial dependent case [2] and [11]. In fact the
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nonexistence result for ¢/ large (i.e. the second part of theorem 2.3) is new even in
the spatial independent case with j = 2.

We emphasize that the whole argument applies to f of type (5.3) even when the
functions k(r) are not uniformly positive and bounded but there are constants &’,

and 6’ such that k*(r)r®= and and k*(r)r% tend to positive constants respectively
as r — 0 and as r — oo, for any i« = 1,...,j. Moreover the condition on the
monotonicity of the functions h'(r) and h’(r) are sufficient to satisfy A/, and A/,
respectively, but they are not necessary (i.e. A/ and A’ are more general).
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