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PART 1: THE SUBCRITICAL AND THE SUPERCRITICAL
CASE.

MATTEO FRANCA

Abstract. We illustrate a method, based on a generalized Fowler transfor-
mation, to discuss the existence and the asymptotic behavior of positive radial
solutions for the following equation:

∆pu(x) + f(u, |x|) = 0,

where ∆pu = div(|Du|p−2Du), x ∈ Rn, n > p > 1. This approach proves to
be particularly useful in the spatial dependent case. Moreover it is a good tool
to detect singular and fast decay solutions.

We apply it to the case in which f ≥ 0 is either subcritical or supercritical,
obtaining structure results for positive solutions and refining the estimates on
the asymptotic behavior.

The equation has been proposed as a reaction diffusion model for a non-
Newtonian fluid and can also be regarded as the constitutive law for a problem
in elasticity theory.

1. Introduction

The main purpose of this paper is to develop a method, based on a generalized
Fowler transformation, to obtain structure results for positive radial solutions of
the following quasi-linear elliptic equation

(1.1) ∆pu(x) + f(u, |x|) = 0,

where ∆pu = div(|Du|p−2Du) is the so called p-Laplacian, x ∈ Rn, n > p > 1, and
f(u, |x|) is a continuous function which is locally Lipschitz in the u variable and
positive for u > 0 and it is null for u = 0. We also assume f to be super-half linear
(see hypotheses F0,G0 below). We require f(−u, r) = −f(u, r), even if we are just
interested in positive solution. We will apply our technique to a rather wide family
of nonlinearities f including

(1.2) f(u, |x|) = k(|x|)u|u|q−2,

where q > p and k is positive and continuous, and

(1.3) f(u, |x|) = k2(|x|) u|u|q2−2

1 + k1(|x|)u|u|q1−2
,

where q2 > q1 > 0, q2 − q1 > p − 1 and the functions k1(|x|) and k2(|x|) are
nonnegative and continuous.

We consider just radial solutions so we commit the following abuse of notation:
we write u(r) for u(x) where |x| = r. Since we only deal with radial solutions we
will in fact consider the following singular O.D.E.

(u′|u′|p−2)′ +
n− 1

r
u′|u′|p−2 + f(u, r) = 0.(1.4)

Dipartimento di Scienze Matematiche, Università di Ancona, Via Brecce Bianche 1, 60131
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Here ′ denotes the derivative with respect to r. We call “regular” the positive
solution u(r) of (1.4) such that u(0) = d > 0 and u′(0) = 0, and we denote it by
u(d, r). We call “singular” positive solutions u(r) which are singular in the origin,
that is limr→0 u(r) = +∞.

In particular we will focus our attention on the problem of existence of ground
states (G.S.), of singular ground states (S.G.S.) and of crossing solutions. By
G.S. we mean a positive regular solution u(r) defined for any r ≥ 0 such that
limr→∞ u(r) = 0. A S.G.S. of equation (1.1) is a singular positive solution v(r)
such that lim|r|→0 v(r) = +∞ and lim|r|→+∞ v(r) = 0. Crossing solutions are radial
solutions u(r) such that u(r) > 0 for any 0 ≤ r < R and u(R) = 0 for a certain
R > 0, so they can be considered as solutions of the Dirichlet problem in the ball
of radius R.

It is possible to prove in a very general context, see Remark 3.8 below, that the
limit limr→+∞u(r)r

n−p
p−1 exists and it is positive for all the solutions u(r) which are

positive for r large. If these limit is finite we say that u(r) has fast decay, while if
it is infinity we say that it has slow decay.

In the last 20 years this family of equations has received a lot of interest, both
for the intrinsic mathematical interest and for its applications. E. g. when f is of
type (1.2) with p = 2 and k(r) = rs1/(1 + rs2), Eq. (1.1) is known as Matukuma
equation and the study of G. S. with fast decay is relevant in understanding star
clusters in astrophysics. Moreover when p = 2 and q = p∗ the equation is known as
scalar curvature equation and the existence of a G.S. u(x) with fast decay amounts
to the existence of a metric g conformal to a standard metric g0 on Rn (g = u

4
n−2 g0),

whose scalar curvature is k(|x|), see [10], [17]. When p 6= 2 these equation finds
application in theory of non Newtonian fluids and in theory of elasticity. More
precisely let us consider the turbulent flow of a polytropic gas, whose concentration
is v(x). We assume that it is being produced by a nonlinear reaction, and it
diffuses in a porous medium. If we set v(x) = u(x)α, where 0 < α < 1/2 is a
constant depending on the pressure, then the steady states are described by (1.1).
The function f(u, x) ≥ 0 describes the nonlinear reaction which generates the gas
and the spatial dependence is related to the non-uniform presence of the catalyst.
For physical reasons just positive solutions are relevant and we have to assume
p ∈ [3/2; 2], see [3], [7]. Here we consider the diffusion of the gas either in the whole
of Rn or in a ball giving Dirichlet boundary condition. As we said for p 6= 2 we
have also applications in theory of elasticity. Let us consider a radially symmetric
shell subject to the nonlinear stress due to his own weight or to an external force.
We denote by f(u, x) the force depending on the axial deflection u(x) from the rest
state and on the spatial variable. Then if the material is hyperelastic, so that the
stress is in divergence form, the steady states for the function u(x) are given by
the solutions of (1.1). We remark that the nonlinear term ∆p(u) appears naturally
and the value p ∈ [1,∞) has to be chosen according to the capacity of the material
to resist to flexion. Moreover if the material is not spatially homogenous we have
to replace ∆p by the more general operator of the form div(g(|x|)∇u|∇u|p−2). In
the appendix we will see how the analysis of radial solution of equations involving
this operator and a spatial independent force f = f(u), can be reduced to the
investigation of equations involving the usual p-Laplacian and a spatial dependent
force f̃ = f̃(u, x). We remand the interested reader to [1] for a physical explanation
of the problem.

Let us denote by F (u, r) =
∫ u

0
f(s, r)ds and by F(u, r) = f(u, r)/|u|p−1. We will

usually consider functions f satisfying the following:

F0: There are M > 0 and R > 0 such that F(u, r) is increasing in the first
variable whenever (u, r) ∈ (

[M, +∞)× (0, 1/R]
) ∪ (

(0, 1/M ]× [R, +∞)
)
.
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Hypothesis F0 is satisfied e. g. when f is of type (1.2) and q > p and when f is of
type (1.3) and q2−q1 > p−1. It is well known that in the former case the structure
of positive solutions changes drastically when the parameter q is larger or smaller
than some critical values σ = pn−1

n−p and p∗ := np
n−p , see Proposition 2.11 below.

When f is of type (1.2) or (1.3), roughly speaking positive solutions exhibit two
typical structures separated by a third one that lies in the border between them.

Sub: All the regular solutions u(d, r) are crossing solutions and they have
negative slope at their first zero R(d), there is a unique S.G.S. with slow
decay and uncountably many S.G.S. with fast decay. No G.S. can exist.

Crit: All the regular solutions are G.S. with fast decay, there are uncountably
many S.G.S. with slow decay. No other positive solutions can exist.

Sup: All the regular solutions are G.S. with slow decay, there is a unique
S.G.S. and has slow decay. There are uncountably many solutions u(r) of
the Dirichlet problem in the exterior of balls, i. e. there is R > 0 such that
u(R) = 0, u(r) > 0 for r > R and u(r) has fast decay.

When f is of type (1.2) and it is spatial independent it is well known that we
have structure Sup for q > p∗, Crit for q = p∗ and Sub for σ < q < p∗. When
p < q ≤ σ regular solutions have structure Sub but singular solutions do not exist.
Some border phenomena appear when k is uniformly positive and bounded and
q = p∗, see [11, 18].

In this paper we are mainly interested in developing a flexible method to in-
vestigate equations of the family (1.4). The main results are Theorems 4.2 and
4.3, in which we give sufficient conditions for the existence of structure Sub and
Sup respectively. The contribution consists in the possibility to deal together with
different spatial dependent non-linearities such as (1.2) and (1.3) inserting them in
a more general context, which covers also new non-linearities. This way we link
together results such as the ones obtained in [20] and [4], completing them with
the analysis of singular solutions, and we generalize the results obtained in [9]. In
a forecoming paper we will see how this method can be successfully applied to the
more interesting and rich case in which f is subcritical for u large and r small and
supercritical for u small and r large.

We follow the way paved by Johnson, Pan and Yi in [17] and later followed by
Johnson, Battelli. So we introduce a dynamical system through a change of coordi-
nates that generalizes the well known Fowler transform and we pass to a dynamical
system. We spend quite a lot of effort on the analysis of the “rare” autonomous
case discussing it in the maximal generality, because it is useful to construct sub
and super solutions. Then we use this knowledge to prove the existence of unstable
and stable sets Wu(τ) and W s(τ) which are made up of initial condition which cor-
respond respectively to regular and fast decay solutions. Then we establish their
mutual position using the transposition of the Pohozaev function, see e.g. [20], [21],
for this dynamical context and we conclude with elementary analysis of the phase
portrait. We point out that fast decay solutions are not easily detected with dif-
ferent techniques and their existence is usually obtained in the p = 2 case through
the Kelvin inversion, see e. g. [25], which is not available in the p 6= 2 case.

The main disadvantage of our method depends on the fact that it can just deal
with radial solutions and it is not suitable to discuss radial domains. However we
stress that radially symmetric solutions are particularly important for (1.1). In
fact when the domain has radial symmetry and f is spatial independent, G.S. and
solutions of the Dirichlet problem in balls have to be radially symmetric under
quite weak assumptions, see e.g. [6], [24], [26]. Moreover the ω-limit set of certain
parabolic equations associated to (1.1) is made up of the union of radially symmetric
ground states of (1.1), see e.g. [23].



4 MATTEO FRANCA

The paper is structured as follows: in section 2 we introduce the Fowler trans-
formation and we discuss the autonomous case. In section 3.1 we develop the con-
struction of stable and unstable sets; in section 3.2 we establish some asymptotic
estimates on the behavior of positive solutions. In section 4 we give the applica-
tions of our method and prove the main results. In the appendix we recall how we
can reduce the study of a class of radial equations involving a spatial dependent
p-Laplace operator to the study of (1.4), see [14].

2. Preliminary result: autonomous problem

We begin this section by introducing a dynamical system through the following
change of coordinates depending on the parameter l > p:

αl = p
l−p , βl = (p−1)l

l−p , γl = βl − (n− 1),

xl = u(r)rαl yl = u′(r)|u′(r)|p−2rβl r = et

gl(xl, t) = f(xe−αlt, et)eαl(l−1)t(2.1)

Using (2.1) we pass from (1.4) to the following system:

(2.2)
(

ẋl

ẏl

)
=

(
αl 0
0 γl

)(
xl

yl

)
+

(
yl|yl|

2−p
p−1

−g(xl, t)

)

Note that local uniqueness of the solutions of (2.2) on the coordinate axes is guar-
anteed if and only if f is locally Lipschitz also for u = 0, and if 1 < p ≤ 2. However
most of the difficulties arising in this non-regular setting may be overcome, as we
will see below.

We give now some notation that will be in force in the whole paper. We de-
note by bold letters the trajectory and with normal letters their coordinates as
follows: x̄l(t) = (x̄l(t), ȳl(t)). We denote by capital letters the trajectories of the
autonomous system to distinguish them from the ones of the non-autonomous sys-
tem. We denote by Xl̄(t, τ ;Q, gl̄) = (Xl̄(t, τ ;Q, gl̄), Yl̄(t, τ ;Q, gl̄)) the trajectory of
the autonomous system (2.2) where l = l̄ and gl̄(x, t) ≡ gl̄(x), departing from Q
at t = τ . We denote by xl̄(t, τ ;Q) = (xl̄(t, τ ;Q), yl̄(t, τ ;Q)) the trajectory of the
non-autonomous system (2.2) where l = l̄, departing from Q at t = τ .

Obviously positive solution u(r) of (1.4) correspond to trajectories xl(t) such
that xl(t) > 0 and u′(r) < 0 implies yl(t) < 0 and viceversa. We denote by
Gl(xl, t) :=

∫ xl

0
gl(ξ, t)dξ = F (xle

−αlt, et)eαllt and by Gl(xl, t) := gl(xl, t)/|xl|p−1

= F(xle
−αlt, et)ept.

When f is of type (1.2) the function f takes the form gl(x, t) = hl(t)x|x|q−2

and Gl(x, t) = h(t) |x|
q

q , where hl(t) = k(et)eδlt and δl = αl(l − q). Furthermore, if
k(r) = Krs, where s ∈ (−p, +∞), then there is l > p such that gl(x, t) ≡ Kx|x|q−2

for any t, so that system (2.2) is autonomous. Moreover if s ∈ (−p, n−p
p−1 (q − σ))

then l > σ, hence γl < 0.
We introduce now the Pohozaev function P (u, u′, r) and its transposition for this

dynamical setting Hl(xl, yl, t):

P (u, u′, r) := rn

[
n− p

p

uu′|u′|p−2

r
+

p− 1
p

|u′|p + F (u, r)
]

Hl(xl, yl, t) :=
n− p

p
xlyl +

p− 1
p

|yl|
p

p−1 + Gl(xl, t)

If xp∗(t) = (xp∗(t), yp∗(t)) and xl(t) = (xl(t), yl(t)) are the trajectories of (2.2)
corresponding to u(r), we have

(2.3) P (u(r), u′(r), r) = Hp∗(xp∗(t), yp∗(t), t) = e−(αl+γl)tHl(xl(t), yl(t), t) .
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When gl(x, t) = ḡl(x) the function Hl(x, y, t) does not really depend on t, so we
will write simply Hl(x, y). We will exploit these functions in order to evaluate
the mutual positions of the stable and unstable sets, both for the t-independent
(autonomous) and for the t-dependent (non-autonomous) system (2.2).

The key observation is that when Gp∗(x, t) is differentiable with respect to t, for
any trajectory xp∗(t) we have the following:

(2.4)
d

dt
Hp∗(xp∗(t), yp∗(t), t) =

∂

∂t
Gp∗(xp∗(t), t)

This is in fact another way to restate the Pohozaev identity, which is one of the
main tool to investigate this equation, see e. g. [20].

From a straightforward computation we find the following.

2.1. Remark. For any i, j larger than p we have Gi(x, t) = Gj(xe(αj−αi)t, t) =
F(xe−αit, et)ept. So if xi(t) and xj(t) correspond to the same solution u(r) of (1.4)
we have Gi(xi(t), t) = Gj(xj(t), t).

In the whole paper we assume the following condition without mentioning it
further:

G0: There is N > 0 such that for any |t| > N the function Gl(x, t) is such
that Gl(0, t) = 0, limx→∞Gl(x, t) = ∞ and it is increasing in x for any
|t| > N .

Observe that F0 is a sufficient condition for G0, and that if f is of type (1.2) G0
holds whenever q > p. From Remark 2.1 it follows that G0 is in fact independent
on the choice of the parameter l. Moreover we have the following:

2.2. Remark. If G0 is satisfied then for |t| > N , the function Gl(x, t) := Gl(x, t)/xp

is increasing in x and limx→0 Gl(x, t) = 0 and limx→+∞ Gl(x, t) = +∞.

We start from a remark concerning local uniqueness and continuous dependence
on the initial data d > 0 for regular solutions u(d, r) of (1.4).

2.3. Remark. For any d > 0 there is a ρ(d) > 0 such that (1.4) admits a unique solu-
tion u(d, r) such that u(d, 0) = d and u′(d, r) = 0, and it is positive and decreasing
for r ∈ [0, ρ(d)). Moreover, given d1, d2 > 0, for any R < min{ρ(d1), ρ(d2)} and any
ε > 0 there is δ > 0 such that maxr∈[0,R] |u(d1, r)−u(d2, r)|+|u′(d1, r)−u′(d2, r)| < ε
whenever |d1 − d2| < δ.

This can be proved putting together the ideas of Propositions A3 and A4 in [12],
with some trivial modification to adapt them to the non-autonomous problem; see
also [14] and the appendix of this paper to understand how we can reduce the case
in which f(u, r) is unbounded as r → 0 to the case in which it is bounded. When
gl(xl, t) does not depend on t, all the solutions of (2.2) are invariant for translations
in t. It follows that if v(r) is a solution of (1.4) and R > 0 is a constant, then
w(r) = v(rR)Rαl is a solution as well. In particular if u(d, r) is a regular solution
of (1.4), then u(dRα, r) = u(d, rR)Rα, for any R > 0.

When l = p∗ the function Hp∗ is a first integral and we can draw each trajectory
of the system, see (2.4). From G0 it follows that Hp∗(0, yp∗) is positive for any
yp∗ 6= 0, and that there is Q̄x > Px > 0 such that if Q = (x, (αp∗x)p−1) ∈ U0

p∗

then Hp∗(Q) is negative and decreasing for 0 < x < Px, negative and increasing for
Px < x < Q̄x and it is positive and increasing for x > Q̄x. Since Hp∗(0, 0) = 0 and
Hp∗ is symmetric with respect to the origin, it is easy to check that the level H = 0
is a 8 shaped curve whose junction point is the origin. So it follows that there
are two homoclinic trajectories. Moreover the level sets of the function Hp∗ are
bounded, so we can conclude that the phase portrait is similar to the one obtained
for non-linearities f of type (1.2) so it is as sketched in Fig. 1.
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U+

U −

Y

XO

H=0

H=−c<0

H=c>0

X=0

−P

P

Figure 1. The level sets of the function H(x, y, t) for t fixed

When (2.2) is autonomous and locally Lipschitz, using standard invariant man-
ifold theory we find that the origin admits a stable and an unstable manifold.
When p > 2 or f is not Lipschitz in u we can construct a stable set and an unsta-
ble manifold, denoted respectively by Ms

l (ḡl) and Mu
l (ḡl), exploiting the argument

developed in [11]. In fact the proof in [11] is developed just for ḡl of the form
ḡl(x) = kx|x|q−2, but it is easy to check that it works for any ḡl satisfying G0. In
fact Mu

l (ḡl) exists for any l > p while Ms
l (ḡl) exists only if l > σ (that is γl < 0).

As we said Mu
l (ḡl) is a manifold, while Ms

l (ḡl) is a closed set, connected by arc and
it is made up by the union of locally Lipschitz trajectories. Moreover repeating the
argument of Lemmas 5.4 and 5.5 in [9] with some trivial changes we can prove the
following.

2.4. Lemma. Assume that gl(xl, t) = ḡl(x) and consider a solution u(r) of (1.4)
and the corresponding trajectory Xl(t) of (2.2).

If u(r) is a regular solutions then Xl(0) ∈ Mu
l (ḡl) and viceversa. Moreover

assume l > σ; if xl(0) ∈ Ms
l (ḡl), then u(r) has fast decay and viceversa.

We define here some sets that will be useful in the whole paper.

U+
l := {(xl, yl) | αlxl + yl|yl|

2−p
p−1 > 0} U−

l :={(xl, yl) | αlxl + yl|yl|
2−p
p−1 < 0}

U0
l := {(xl, yl) | αlxl+yl|yl|

2−p
p−1 = 0}

R2
+ := {(xl, yl) | xl ≥ 0} R2

± :={(xl, yl) | yl < 0 < xl}
From now on we will commit the following abuse of notation: we will denote by
Mu

l (ḡ) and Ms
l (ḡ) the branch of the manifold and of the continuum respectively,

which depart from the origin and enters in R2
+. Follow Mu

l (ḡ) (respectively Ms
l (ḡ))

from the origin towards R2
+: it intersects the isocline U0

l in a point, denoted by Q̃u
l

(resp. in a set ξ̃s
l ). Denote by M̃u

l (ḡ) (resp. M̃s
l (ḡ)), the branch of Mu

l (ḡ) (resp.
Ms

l (ḡ)) between the origin and Q̃u
l (resp. ξ̃s

l ), deprived of the origin. With some
elementary analysis on the phase portrait we get the following useful result.

2.5. Lemma. Assume that there is l > p such that gl(x, t) ≡ ḡl(x) and consider
a trajectory Xl(t) of (2.2). If there is a sequence Tn, |Tn| → +∞, such that
limn→∞ |Xl(Tn)| = +∞ then the trajectory Xl(t) has to cross the coordinate axes
infinitely many times.
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Figure 2. A sketch of Mu
l and of Ms

l when l > p∗ (on the left)
and σ < l < p∗ (on the right)

Proof. We need to introduce the following modified polar coordinates:

(2.5) xl|xl|p−2 = ρl cos(θl) y = ρl sin(θl)

Note that tan(θl(t)) = u′(et)et/u(et), so in fact θl(t) = θ(t) is independent of l. We
get

θ̇ =
|xl|p−2

|xl|2p−2 + |yl|2
[
[γl − (p− 1)αl]xlyl − (p− 1)yl|yl|

2−p
p−1 − xlgl(xl, t)

]
=

= (p− n) sin(θ) cos(θ)− (p− 1)| sin(θ)| p
p−1 | cos(θ)| p−2

p−1−
− cos2(θ)Gl(|ρl cos(θ)| 1

p−1 sign[cos(θ)], t)

(2.6)

Observe that θ̇l → −∞ as ρl → +∞, whenever cos(θl) 6= 0 and that it is a
negative constant independent of ρl when cos(θl) = 0. So if Xl(t) is unbounded then
θl(t) → −∞ and the trajectory has to cross the coordinate axes indefinitely. ¤

Now we show that if ḡ satisfies hypothesis G0 (and it is independent of t), then
the shape of Mu

l (ḡ) and Ms
l (ḡ) is similar to the one depicted in figures 1 and 2.

2.6. Lemma. Assume that gl(x, t) ≡ ḡl(x). Then, if l > p∗ the unstable manifold
Mu

l is contained in R2
+ and joins the origin and P, while the stable set Ms

l crosses
the yl-positive semi-axis. If l = p∗ the unstable manifold Mu

l coincide with the
stable set Ms

l and they are the union of the origin and of the graph of a trajectory
homoclinic to it. If σ < l < p∗ the stable set Ms

l is contained in R2
+ and joins the

origin and P while Mu
l crosses the y-negative semi-axis. If p < l ≤ p∗, there is

neither stable set nor the critical point P, while Mu
l exists and crosses the y-negative

semi-axis.

Proof. We recall that Ḡl(x) = Ḡl(x)/xp is increasing in the x variable, see Remark
2.2. The key idea is that we can rewrite (2.4) as follows:

d

dt
Hp∗(Xp∗(t), t) =

∂Ḡp∗

∂t
(Xp∗(t), t) = |Xp∗(t)|p ∂Ḡl

∂t
(Se(αl−αp∗ )t)bS=Xp∗ (t).

It follows that Hp∗(Xp∗(t), t) is increasing in t, whenever p < l < p∗, it is constant
when l = p∗, and it is decreasing when l > p∗. When l = p∗ the function Hp∗ is a
first integral so the phase portrait is given by the level sets of Hp∗ and the claim
follows, see Fig. 1.

Now we consider the case l 6= p∗. First of all observe that, if we denote by
Fl(xl, yl) =

(
F 1

l (xl, yl), F 2
l (xl, yl)

)
the right hand side of (2.2), we have ∂

∂xl
F 1

l (xl, yl)+



8 MATTEO FRANCA

∂
∂yl

F 2
l (xl, yl) = αl +γl 6= 0. Thanks to the Poincarè-Bendixson criterion, we deduce

that there are no closed orbits made up of the union of trajectories. So there are
nor periodic trajectories neither homoclinic or heteroclinic cycles.

Assume first that σ < l < p∗, so that αl + γl > 0 and P exists and it is a
repulser. Choose Qs ∈ Ms

l and Qu ∈ Mu
l and consider the trajectories Xl(t, τ,Qu)

and Xl(t, τ,Qs); denote by u(r) and xu
p∗(t) the solutions of (1.4) and of (2.2) with

l = p∗ corresponding to Xl(t, τ,Qu) and by s(r) and xs
p∗(t) the ones corresponding

to Xl(t, τ,Qs). Observe that limt→−∞xu
p∗(t) = (0, 0) = limt→+∞xs

p∗(t) (see Lemma
2.6), and that Hp∗(xp∗(t), t) is increasing along the trajectories; therefore Hl(Qs) <
0 < Hl(Qu).

Moreover Xl(t, τ,Qu) cannot converge to the origin as t → +∞ due to the
Poincare-Bendixson criterion, nor to P since Hl(P) < 0. So from Lemma 2.7 it
follows that Mu

l has to cross the y negative semi-axis, and that Ms
l is contained in

the set {(xl, yl) ∈ R2
± |Hl(xl, yl) < 0}. Then it is easy to check that Ms

l joins the
origin and the critical point P ∈ R2

±\ {(0, 0)}.
The claim concerning the case l > p∗ can be proved in the same way. The claim

concerning the case p < l ≤ σ follows observing that there are no critical points
in the interior of R2

+ and using again Poincarè Bendixson criterion and Lemma
2.7. ¤

Now we state a Lemma which will be useful to obtain asymptotic estimates also
in the non-autonomous case.

2.7. Lemma. Assume that there is l > p such that gl(xl, t) ≡ ḡl(xl) and consider
a trajectory Xl(t) of (2.2). If there is tn ↗ +∞ (respectively tn ↘ −∞) such that
Xl(t) ∈ R2

+ for t > t1 (resp. for t < t1) and Xl(tn) → 0, then limt→+∞Xl(t) =
(0, 0) (resp. limt→−∞Xl(t) = (0, 0)).

Proof. The case l = p∗ is a consequence of Lemma 2.8; so assume l > p∗ and follow
the stable set Ms

l from the origin towards R2
+. From Lemma 2.8 we know that Ms

l

crosses the xl positive semi-axis in a set K. Denote by Ax = min{x | (x, 0) ∈ K}
and by A = (Ax, 0). Let us denote by Bs the open bounded set enclosed by Ms

l

and the segment of the xl axis between the origin and A. Note that Bs ⊂ R2
±, so

the flow restricted to Bs is continuous. Moreover it is positively invariant.
Choose a point Q ∈ U0

l ∩ Bs and set t1 = sup{t > 0 | Ẋl(s, 0,Q) 6= 0 for s ∈
(0, t)} when Q 6= P and set t1 = 0 for Q = P. When 0 < t1 < ∞ set t2 = sup{t >

0 | Ẋl(s, 0,Q) 6= 0 for s ∈ (t1, t)}; we denote by ψ1(Q) = limt→t1 Xl(t,Q) and by
ψ2(Q) = limt→t2 Xl(t,Q). We set ψ2(P) = ψ1(P) = P. From the continuity of the
flow of (2.2) we deduce that the functions ψi : U0

l ∩Bs → U0
l ∩Bs are continuous

for i = 1, 2.
Assume for contradiction that there is a sequence tn ↗ +∞ such that Xl(tn) →

0, but the limit limt→+∞Xl(t) does not exist. Then we can find a sequence τn ↗
+∞ such that Ẋl(τn) = 0 and Xl(τn) is a positive minimum if n is even and it is a
positive maximum if n is odd and Xl(τ2k) → 0 but Xl(τ2k+1) is uniformly positive;
moreover we can assume ψ1(Xl(τn)) = Xl(τn+1).

Since Xl(τ2k) ∈ U0
l for any k it follows that Xl(τ2k) → (0, 0) as k → ∞.

Moreover ψ2 is continuous and monotone in the x variable since the trajecto-
ries of (2.2) cannot have self-intersections in Bs. Hence the limit ψ2

(
(0, 0)

)
=

limX→(0,0) ψ2(X) = limk→∞ ψ2(Xl(τ2k)) is well defined; but ψ2(Xl(τ2k)) = Xl(τ2k+2) →
(0, 0), so ψ2

(
(0, 0)

)
= (0, 0) and this contradicts the Poincare-Bendixson criterion;

thus limt→+∞Xl(t) = (0, 0).
Assume that there is a sequence tn ↘ −∞ such that Xl(tn) → 0, but the limit

limt→−∞Xl(t) does not exist; in fact again Xl(tn) → (0, 0) since the origin is the
unique critical point of the yl axis. We recall that Q̃u and Q̃s are the intersections
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between U0
l and M̃u

l and M̃s
l respectively, and that Hl(Q̃u) < 0 < Hl(Q̃s), so Q̃u

is on the left of Q̃s. Denote by c the open segment of U0
l between Q̃u and Q̃s:

it is easy to check that, for any Q ∈ c, there are T 2(Q) < T 1(Q) < 0 such that
Xl(t, 0,Q) intersects the x and the y positive semi-axis, respectively at t = T 1(Q)
and at t = T 2(Q), see figure 2.

For any ε > 0 there is N > 0 such that ‖Xl(tN )‖ < ε. Following Xl(t) backwards
in t we find that there is T < tN such that Xl(T ) ∈ c. Hence Xl(t) have to cross the
yl positive semi-axis at a certain t < T , a contradiction. So limt→−∞Xl(t) = (0, 0).
The case σ < l < p∗ can be obtained reasoning in the same way. In fact if local
uniqueness of the solutions on the coordinate axes is not ensured Xl(t, 0,Q) is not a
priori uniquely defined for t < T 1(Q) and T 2(Q) is a multivalued function. However
the argument goes through for any of the solutions bifurcating from Xl(t, 0,Q) for
t < T 1(Q). ¤

From Lemma 2.8 we deduce the following useful results.

2.8. Proposition. Assume that there is l > p such that gl(xl, t) ≡ ḡl(xl) is indepen-
dent of t and consider a singular solution v(r) of (1.4). Then v(r)rαl is uniformly
positive and bounded for 0 < r < 1.

Analogously assume that l > σ and consider a slow decaying solution w(r) of
(1.4). Then w(r)rαl is uniformly positive and bounded for r > 1.

Hence putting together Lemma 2.8 and Proposition 2.10 we can prove the follow-
ing Proposition. The result is known when f is of type (1.2) but in this generality
is in fact new, even if the hypothesis of independence in t is rather unusual.

2.9. Proposition. Consider (1.4) and assume that gl(x, t) ≡ ḡ(x).
• If l > p∗ positive solutions have structure Sup.
• If l = p∗ positive solutions have structure Crit.
• If σ < l < p∗ positive solutions have structure Sub.
• If p < l < p∗ all the regular solutions are crossing solutions.

When f is of type (1.2) and l = p∗ in fact we know the exact expression of the
G.S. with fast decay, see e.g. [13].
Using the invariance of the system for translations in t, we obtain also the following
result that will be useful in the next sections.

2.10. Remark. Assume l > p; fix Q ∈ Mu
l (ḡl) and consider Xl(t, τ ;Q, ḡl) and the

corresponding regular solution u(d(τ,Q), r) of (1.4). Then

(2.7) d(τ,Q) = Cd(Q)e−αlτ ,

where Cd(Q) is an injective continuous function such that Cd((0, 0)) = 0 (and
Cd(Q) > 0 for Q 6= (0, 0)).

Analogously assume l > σ; fix P ∈ Ms
l (ḡl) and consider the trajectory Xl(t, τ ;P, ḡl)

of the autonomous system (2.2) and the corresponding fast decay solution v(r; τ,P)
of (1.4). Let us denote by L(τ,P) the limit limr→+∞v(r; τ,P)r

n−p
p−1 = L(τ,P). Then

(2.8) L(τ,P) = CL(P)e( n−p
p−1−αl)τ

where CL(P) is a function such that CL((0, 0)) = 0 and CL(P) > 0 for P 6= (0, 0);
if l = p∗, then CL(P) is injective a continuous.

Proof. In this proof the value l of (2.1) is fixed so we omit the subscript. We start
from the first claim, so let Q ∈ Mu(ḡ). Then

u(d(τ,Q), et)eαt = X(t, τ ;Q, ḡ) = X(t− τ, 0;Q, ḡ) = u(d(0,Q), et−τ )eα(t−τ).
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So if we let t tend to −∞ we get d(τ,Q) = d(0,Q)e−ατ and (2.7) follows simply
setting d(0,Q) = Cd(Q). From Remark 2.3 we also find that Cd(Q) is injective.
Since Cd((0, 0)) = 0 it follows that Cd(Q) > 0 for Q6= 0.

Now assume l > σ and choose P ∈ Ms(ḡ). Reasoning as above, we get
v(et; τ,P) = v(et−τ ; 0,P)e−ατ and L(τ,P) = L(0,P)e( n−p

p−1−α)τ . So we can set
CL(P) = L(0,P). ¤

3. The t-dependent case

Now we begin to study the case in which gl(x, t) depends effectively on t, for any
l. We state the hypotheses needed to construct stable and unstable sets W̃u

l (τ) and
W̃ s

l (τ) sharing properties similar to the stable and unstable set M̃u
l and M̃s

l of the
autonomous system. Choose τ ∈ R, we introduce the following functions

(3.1)
aτ

l (xl) = inft≤τ 1/2gl(xl, t) bτ
l (xl) = supt≤τ 2gl(xl, t)

Aτ
l (xl) = inft≥τ 1/2gl(xl, t) Bτ

l (xl) = supt≥τ 2gl(xl, t)

Note that these functions are monotone increasing in x for any τ and satisfy G0,
if they are not identically null or infinity. We need some of these assumptions:

G1: There is l1 > p such that for any x > 0 the function gl1(x, t) converges
to a t-independent locally Lipschitz function g−∞l1

(x) 6≡ 0 as t → −∞
uniformly on compact intervals.

G1′: There is l1 > p such that for any τ ∈ R the functions aτ
l1

and bτ
l1

are locally Lipschitz. Moreover for any x > 0 and any τ < 0, we have
0 < aτ

l1
(x) < bτ

l1
(x) < ∞.

G2: There is l2 > σ such that for any x > 0 the function gl2(x, t) converges
to a t-independent locally Lipschitz function g+∞

l2
(x) 6≡ 0 as t → +∞

uniformly on compact intervals.
G2′: There is l2 > σ such that for any τ ∈ R the functions Aτ

l2
and Bτ

l2
are locally Lipschitz. Moreover for any x > 0 and any τ > 0, we have
0 < Aτ

l2
(x) < Bτ

l2
(x) < ∞.

Obviously G1 implies G1′, and G2 implies G2′.

3.1. Construction of stable and unstable set assuming G1′, and G2′. When
f has the form (1.2), k(et) is uniformly continuous for t ∈ R and the system is C1 we
can construct these sets via invariant manifold theory for non-autonomous system,
see [17]. In such a case it can be proved that the sets W̃u

l (τ) and W̃ s
l (τ) which will

be defined below, are actually manifolds. In the general case we need to exploit
our knowledge of the autonomous systems in order to construct some barrier sets;
then we will apply a topological lemma based on the idea of Wazewski’s principle.

We recall that M̃u
l

(
aτ

l

)
is the branch of the unstable manifold of the autonomous

systems (2.2) where gl(xl, t) ≡ aτ
l (xl), between the origin and the point Q̃u

l

(
aτ

l

)
of

the isocline U0
l , and that the analogous definition holds for M̃u

l

(
bτ
l

)
. Assume that

G1′ and G2′ hold; observe that for any τ , M̃u
l1

(
aτ

l1

)
, M̃u

l1

(
bτ
l1

)
, M̃s

l2

(
Aτ

l2

)
, M̃s

l2

(
Bτ

l2

)
have positive and finite diameter. If lu > l1, then aτ

lu
≡ 0 and if ls > l2, then

Bτ
ls
≡ +∞; so in such a case M̃u

lu

(
aτ

lu

)
is unbounded (it is the x positive semi-axis)

and M̃s
ls

(
Bτ

ls

)
is not well defined while M̃u

lu

(
bτ
lu

)
and M̃s

ls

(
Aτ

ls

)
still have positive

finite diameter. Analogously if lu < l1 and ls < l2 then bτ
lu
≡ +∞ and Aτ

ls
≡ 0.

We denote by c̃u
l1

(τ) the branch of U0
l1

between Q̃u
l1

(
aτ

l1

)
and Q̃u

l1

(
bτ
l1

)
. M̃u

l1

(
aτ

l1

)

is on the right of M̃u
l1

(
bτ
l1

)
(here and later we think of the x axis as horizontal and

the y axis as vertical), and they do not intersect (this will be proved in Lemma
3.1 below). Finally we denote by ∂Ẽu

l1
(τ) = M̃u

l1

(
aτ

l1

) ∪ M̃u
l1

(
bτ
l1

)
and by Ẽu

l1
(τ) the

bounded set enclosed by ∂Ẽu
l1

(τ) and c̃u
l1

(τ).
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Analogously M̃s
l2

(
Aτ

l2

)
is on the right of M̃s

l2

(
Bτ

l2

)
, and they do not intersect. It

follows that ξ̃s
l2

(
Aτ

l2

)
is on the right of ξ̃s

l2

(
Bτ

l2

)
as well, see again Lemma 3.1: we

denote by Q̃s
l2

(
Aτ

l2

)
the left endpoint of ξ̃s

l2

(
Aτ

l2

)
and by Q̃s

l2

(
Bτ

l2

)
the right endpoint

of ξ̃s
l2

(
Bτ

l2

)
. We denote by c̃s

l2
(τ) the branch of U0

l2
between Q̃s

l2

(
Aτ

l2

)
and Q̃s

l2

(
Bτ

l2

)
.

Finally we denote by ∂Ẽs
l2

(τ) = M̃s
l2

(
Aτ

l2

)∪M̃s
l2

(
Bτ

l2

)
and by Ẽs

l2
(τ) the bounded

set enclosed by ∂Ẽs
l2

(τ) and c̃s
l2

(τ).

3.1. Lemma. Assume that G1′ holds. Then the flow of the non-autonomous system
(2.2) on ∂Ẽu

l1
(τ) points towards the interior of Ẽu

l1
(τ), for any t ≤ τ .

Analogously assume that G2′ holds. Then the flow of the non-autonomous sys-
tem (2.2) on ∂Ẽs

l2
(τ) points towards the exterior of Ẽs

l2
(τ), for any t ≥ τ .

Proof. Fix τ and choose Q= (Qx, Qy) ∈ M̃u
l1

(
aτ

l1

)
. Note that M̃u

l1

(
aτ

l1

)
is con-

tained in the graph of the trajectory Xl1(t, T ;Q, aτ
l1

) of the autonomous system
where gl1(xl1 , t) ≡ aτ

l1
(xl1). Recall that xl1(t, T ;Q) is the trajectory of the non-

autonomous system departing from Q at t = T . Observe that d
dtXl1(T, T ;Q, aτ

l1
) =

d
dtxl1(T, T ;Q) but

[
Ẏl1(T, T ;Q, aτ

l1)− ẏl1(T, T ;Q)
]

=
[
gl1(Qx, T )− aτ

l1

(
Qx

)]
> 0 ,

for any T ≤ τ . Therefore the flow of the non-autonomous system (2.2) on M̃u
l1

(
aτ

l1

)

points towards the interior of Ẽu
l1

(τ). Reasoning in the same way we can conclude
that the flow of (2.2) on M̃u

l1

(
bτ
l1

)
points towards the interior of Ẽu

l1
(τ), too. From

this argument it also follows that M̃u
l1

(
aτ

l1

)
is on the right of M̃u

l1

(
bτ
l1

)
and that they

do not intersect. The proof concerning G2′ is similar so we will omit it. ¤

3.2. Lemma. Assume that hypotheses G1′ is satisfied. Then there is a connected
set Ku

l1
(τ) ⊂ c̃u

l1
(τ) such that Q̃u

l1
(aτ

l1
) ∈ Ku

l1
(τ) and the flow of (2.2) on c̃u

l1
(τ)

points towards U−
l1

for any t ≤ τ . Analogously assume that hypotheses G2′ is
satisfied. Then there is a connected set Ks

l2
(τ) ⊂ c̃s

l2
(τ) such that Q̃s(Aτ

l2
) ∈ Ks

l2
(τ)

and the flow of (2.2) with l = l2 on c̃s
l2

(τ) points towards U−
l2

.

Proof. We just prove the first claim since the second is completely analogous. Since
c̃u
l1

(τ) is a subset of the isocline U0
l1

, the flow of (2.2) on c̃u
l1

(τ) is vertical. Set
Q̃u(aτ

l1
) = (Q̃x, Q̃y) and observe that

ẏl1(Q̃
u(aτ

l1), t) := −γl1Q̃y − gl1(Q̃x, t) < −γl1Q̃y − aτ
l1(Q̃x) = −δ ≤ 0 ,

for any t ≤ τ . Then the claim follows from a continuity argument. ¤

We state a topological Lemma which is a slight variant of [22] Lemma 4, which
enables us to prove that the sets we are constructing are connected.

3.3. Lemma. Let R be a closed set homeomorphic to a full triangle. We call the
vertices O, A and B and o, a, b the edges which are opposite to the respective vertex.
Let S ⊂ R be a closed set such that σ ∩ S 6= ∅, for any path σ ⊂ R joining a with
b. Then S contains a closed connected set which contains O and at least one point
of o.

Choose Q ∈ Ẽu
l1

(τ); we denote by

T̃u(Q) = inf{T ≤ τ |xl1(t, τ ;Q) ∈ Ẽu
l1(τ), for any t ∈ (T, τ ]}

and by ψu,τ
l1

(Q) = limt→T̃ u(Q) xl1(t, τ ;Q). For Q ∈ Ẽs
l2

(τ) we set

T̃ s(Q) = sup{T ≥ τ |xl2(t, τ ;Q) ∈ Ẽs
l2(τ), for any t ∈ [τ, T )}
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and ψs,τ
l2

(Q) = limt→T̃ s(Q) xl2(t, τ ;Q). The definitions of ψu,τ
l1

(Q) and ψs,τ
l2

(Q) are
clearly well given when T̃u(Q) > −∞ and T̃ s(Q) < +∞; however with elementary
arguments it can be shown that if T̃u(Q) = −∞ then limt→−∞xl1(t, τ ;Q) = (0, 0),
and if T̃ s(Q) < +∞ then limt→+∞xl2(t, τ ;Q) = (0, 0). The functions ψu,τ

l1
:

Ẽu
l1

(τ) → ∂Ẽu
l1

(τ)∪ c̃u
l1

(τ) and ψs,τ
l2

: Ẽs
l2

(τ) → ∂Ẽs
l2

(τ)∪ c̃s
l2

(τ) are well defined, but
in general they are not continuous, since the flow of (2.2) on c̃u

l1
(τ) and on c̃s

l2
(τ) is

not transversal. Let us denote by

Wu
l1(τ) := {Q ∈ Ẽu

l1(τ) |ψu,τ
l1

(Q) = (0, 0)}
W s

l2(τ) := {Q ∈ Ẽs
l2(τ) |ψs,τ

l2
(Q) = (0, 0)}

We want to apply Lemma 3.3 to Wu
l1

(τ) and to W s
l2

(τ). We introduce the following
sets

A(τ) := {Q ∈ Ẽu
l1(τ) |ψu,τ

l1
(Q) ∈ M̃u

l1(a
τ
l1)\ {(0, 0)}}

B(τ) := Ẽu
l1(τ)\ (A(τ) ∪Wu

l1(τ)
)

We claim that A(τ) and B(τ) are both open in Ẽu
l1

(τ). Consider the set ∂Ẽu
l1

(τ) ∪
c̃u
l1

(τ): we can find a connected set Ω relatively open in ∂Ẽu
l1

(τ) ∪ c̃u
l1

(τ) such that
Ω ⊃ M̃u

l1
(aτ

l1
), and the flow of (2.2) on Ω\{(0, 0)} is transversal (this follows from

the existence of Ku
l1

(τ)). The flow of (2.2) restricted to the counter image of ψu,τ
l1

on Ω\{(0, 0)} is continuous. Now we prove the continuity of ψu,τ
l1

on Wu
l1

(τ) and
that the flow of (2.2) restricted to the whole

D(τ) := {Q ∈ Ẽu
l1(τ) |ψu,τ

l1
(Q) ∈ Ω}

is continuous; it follows that Wu
l1

(τ) is closed.
Let us choose Q ∈ Wu

l1
(τ) and Qn ∈ Ẽu

l1
(τ) such that Qn → Q as n → ∞. We

claim that for any δ > 0 there is N such that ‖ψu,τ
l1

(Qn)‖ < δ for any n > N . In
fact from the continuity of the flow of (2.2) in Ẽu

l1
(τ)\{(0, 0)}, we know that for

any M > 0 we can find N such that T̃u(Qn) < −M for any n > N . For any ε > 0
we can choose M > 0 large enough so that xl1(−M, τ ;Q) < ε/2. Then, possibly
choosing a larger N , we can assume that

|xl1(−M, τ ;Qn)− xl1(−M, τ ;Q)| < ε/2 ,

for any n > N . Moreover xl1(t, τ ;Qn) < xl1(−M, τ ;Qn) < ε for any t ∈ [T̃u(Qn),−M ],
because ẋl1(t, τ ;Qn) > 0 for t in that interval. Since xl1(t, τ ;Qn) ∈ U+

l1
we have

‖ψu,τ
l1

(Qn)‖ ≤ ε + [αl1ε]
p−1 ≤ δ if ε is small enough, so the continuity of ψu,τ

l1
in

D(τ) is proved and Wu
l1

(τ) is closed.
Now observe that A(τ) is contained in D(τ) and that it is the counter image of

Ω\ ({(0, 0)} ∪ M̃u
l1

(bτ
l1

)
)

through ψu,τ
l1

. Hence Wu
l1

(τ) is closed and A(τ) is open in
Ẽu

l1
(τ). In fact Wu

l1
(τ) ∪ A(τ) is the closure of A(τ) in Ẽu

l1
(τ). Therefore B(τ) =

Ẽu
l1

(τ)\
(
Wu

l1
(τ) ∪ A(τ)

)
is open.

Our purpose is to apply Lemma 3.3, withR = Ẽu
l1

(τ), a = M̃u
l1

(aτ
l1

), b = M̃u
l1

(bτ
l1

),
o = c̃u

l1
(τ) and S = Wu

l1
(τ). So consider a continuous path Γ(s) : [0, 1] → Ẽu

l1
(τ)

such that Γ(0) ∈ M̃u
l1

(aτ
l1

) and Γ(1) ∈ M̃u
l1

(bτ
l1

): we need to show that there is
s ∈ [0, 1] such that Γ(s) ∈ Wu

l1
(τ).

Let us define the following two sets:

A(τ) := {s ∈ [0, 1] |Γ(s) ∈ A(τ)} B(τ) := {s ∈ [0, 1] |Γ(s) ∈ B(τ)}
Note that 0 ∈ A(τ) while 1 ∈ B(τ). Moreover A(τ) = Γ−1(A(τ)) and B(τ) =
Γ−1(B(τ)) are both relatively open in [0, 1] since A(τ) and B(τ) are relatively open
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in Ẽu
l1

(τ) and Γ is continuous. Since [0, 1] is connected there is s ∈ (0, 1)\ (A(τ) ∪
B(τ)

)
, so that Γ(s) ∈ Wu

l1
(τ).

So we can apply Lemma 3.3 and conclude the following.

3.4. Lemma. Assume that G1′ is satisfied. Then for any τ ∈ R Wu
l1

(τ) contains
a compact connected set W̃u

l1
(τ) to which the origin belongs and which intersects

c̃u
l1

(τ) in a set denoted by ξ̃u
l1

(τ). Analogously assume that G2′ is satisfied, then
W s

l2
(τ) contains a compact connected set W̃ s

l2
(τ) to which the origin belongs and

which intersects c̃s
l2

(τ) in a set denoted by ξ̃s
l2

(τ).

The proof concerning W̃ s
l2

(τ) is completely analogous so we omit it.
In order to study the asymptotic behavior of the trajectories departing from

W̃u
l1

(τ) and W̃ s
l2

(τ), we need to construct another barrier set, using a similar argu-
ment.

We denote by B̄u
l1

(τ) = (B̄u
x (τ), B̄u

y (τ)) := Q̃u(bτ
l1

). We denote by Āu
l1

(τ) the
point of intersection between M̃u

l1
(aτ

l1
) and the line x = B̄u

x (τ). Analogously we
denote by B̄s

l2
(τ) = (B̄s

x(τ), B̄s
y(τ)) := Q̃s(Bτ

l2
). We denote by Ās

l2
(τ) the point of

intersection between M̃s
l2

(Aτ
l1

) and the line x = B̄s
x(τ). We set

Ēu
l1(τ) := {xl1 = (xl1 , yl1) ∈ Ẽu

l1(τ) |xl1 ≤ B̄u
x (τ)}

Ēs
l2(τ) := {xl2 = (xl2 , yl2) ∈ Ẽs

l2(τ) |xl2 ≤ B̄s
x(τ)}

M̄u
l1

(
aτ

l1

)
:= {xl1 = (xl1 , yl1) ∈ M̃u

l1(a
τ
l1) |xl1 ≤ B̄u

x (τ)}
M̄s

l2

(
Aτ

l2

)
:= {xl2 = (xl2 , yl2) ∈ M̃s

l2

(
Aτ

l2

) |xl2 ≤ B̄s
x(τ)}

We set M̄u
l1

(
bτ
l1

)
= M̃u

l1

(
bτ
l1

)
and M̄s

l2

(
Bτ

l2

)
= M̃s

l2

(
Bτ

l2

)
. We denote by c̄u

l1
(τ) the line

between B̄u
l1

(τ) and Āu
l1

(τ) and by c̄s
l2

(τ) the line between B̄s
l2

(τ) and Ās
l2

(τ). We
denote by ∂Ēu

l1
(τ) = M̄u

l1

(
bτ
l1

) ∪ M̄u
l1

(
aτ

l1

)
and by Ēu

l1
(τ) the bounded set enclosed

by c̄u
l1

(τ) and ∂Ēu
l1

(τ). Analogously we denote by ∂Ēs
l2

(τ) = M̄s
l2

(
Bτ

l2

) ∪ M̄s
l2

(
Aτ

l2

)
and by Ēs

l2
(τ) the bounded set enclosed by c̄s

l2
(τ) and ∂Ēs

l2
(τ).

Note that the flow of (2.2) with l = l1 on ∂Ēu
l1

(τ) points towards the interior of
Ēu

l1
(τ), while on c̄u

l1
(τ) it points towards the exterior of Ēu

l1
(τ), for any t ≤ τ and

any τ ∈ R. Analogously the flow of (2.2) with l = l2 on ∂Ēs
l2

(τ) points towards the
exterior of Ēs

l2
(τ), while on c̄s

l2
(τ)\ {Ās

l2
(τ), B̄s

l2
(τ)} it points towards the interior

of Ēs
l2

(τ) for any t ≤ τ and any τ ∈ R.
So repeating the argument of Lemma 3.4 we can prove that there are compact

connected sets W̄u
l1

(τ) and W̄ s
l2

(τ), which contain the origin and intersect respec-
tively c̄u

l1
(τ) and c̄u

l2
(τ), endowed with the following property:

W̄u
l1(τ) ⊂ {Q ∈ R2

+ |xl1(t, τ ;Q) ∈ Ēu
l1(τ) for any t ≤ τ}

W̄ s
l2(τ) ⊂ {Q ∈ R2

+ |xl2(t, τ ;Q) ∈ Ēs
l2(τ) for any t ≥ τ}

Let us denote by ξ̄u
l (τ) = c̄u

l (τ) ∩ W̄u
l (τ) and ξ̄s

l (τ) = c̄s
l (τ) ∩ W̄ s

l (τ), and observe
that we can (and we will) choose W̄u

l (τ) ⊂ W̃u
l (τ) and W̄ s

l (τ) ⊂ W̃ s
l (τ) for any

τ ∈ R and for l = l1 and l = l2.
Using the flow of (2.2) we can define global stable and unstable sets as follows:

Wu
l1(τ) := ∪T∈R{P | ∃Q ∈ W̄u

l1(T ) s.t. P = xl1(τ, T ;Q)} ,

Ws
l2(τ) := ∪T∈R{P | ∃Q ∈ W̄ s

l2(T ) s.t. P = xl2(τ, T ;Q)}
Moreover we have the following estimate on the behaviour of the trajectories of the
non-autonomous system departing from these sets. Note that if G1′ holds, a priori
Wu

l1
(τ) may be contained in U+

l1
and it may not intersect U0

l1
.
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3.5. Lemma. Assume that G1′ and G2′ hold; let Q̄u ∈ W̄u
l1

(τ) and Q̄s ∈ W̄ s
l2

(τ).
Then the solution of (1.4) corresponding to the trajectory xl1(t, τ ; Q̄u) is a regular
solution u(d, r), where d = d(τ ; Q̄u). Moreover if Q̄u ∈ ξ̄u

l1
(τ) we have d(τ ; Q̄u) →

+∞ as τ → −∞ and viceversa, τ → +∞ if d(τ ; Q̄u) → 0, and if l1 ≤ l2 the
viceversa holds as well.

Analogously the solution of (1.4) corresponding to the trajectory xl2(t, τ ; Q̄s) is
a fast decay solution v(L, r), where L = L(τ ; Q̄s) = limr→+∞v(L, r)r(n−p)/(p−1).
Moreover if Q̄s ∈ ξ̄s

l2
(τ) we have L(τ ; Q̄s) → +∞ as τ → +∞ and viceversa,

τ → −∞ as L(τ ; Q̄s) → 0 as and if l1 ≤ l2 the viceversa holds as well.

Proof. The idea is to compare trajectories of the non autonomous system with
trajectories of the autonomous system. Choose Q̄u = (Q̄u

x, Q̄u
y ) ∈ ξ̄u

l1
(τ). Consider

the trajectories Xl1(t, τ ; Āu
l1

(τ), aτ
l1

) and Xl1(t, τ ; B̄u
l1

(τ), bτ
l1

) of the autonomous
system (2.2) and the corresponding regular solutions
u(d(τ, Āu

l1
(τ)), r) and u(d(τ, B̄u

l1
(τ)), r) of (1.4). Then we have the following

(3.2) Xl1(t, τ ; Āu
l1(τ), aτ

l1) ≤ xl1(t, τ ; Q̄u) ≤ Xl1(t, τ ; B̄u
l1(τ), bτ

l1)

for any t ≤ τ . In fact let us denote by t0 = inf{T ≤ τ |xl1(t, τ ; Q̄u) ≤ Xl1(t, τ ; B̄u
l1

(τ), bτ
l1

) for t ∈ [T, τ ]};
if t0 > −∞, then xl1(t0, τ ; Q̄u) =
Xl1(t0, τ ; B̄u

l1
(τ), bτ

l1
) and yl1(t0, τ ; Q̄u) > Yl1(t0, τ ; B̄u

l1
(τ), bτ

l1
). Therefore from

(2.2) we find ẋl1(t0, τ ; Q̄u) > Ẋl1(t0, τ ; B̄u
l1

(τ), bτ
l1

) a contradiction, so the second
inequality in (3.2) is proved; the other can be proved reasoning in the same way.

Let us denote by u(r) the solution of (1.4) corresponding to xl1(t, τ ; Q̄u). It fol-
lows that for any r ≤ exp(τ) we have u(d(τ, Āu

l1
(τ)), r) ≤ u(r) ≤ u(d(τ, B̄u

l1
(τ)), r),

so u(r) is a regular solution. Moreover if u(0) = d(τ, Q̄u), we have

(3.3) d(τ, Āu
l1(τ)) ≤ d(τ, Q̄u) ≤ d(τ, B̄u

l1(τ))

In fact this argument can be repeated for any point Q̄u ∈ W̄u
l1

(τ) ∩ {(x, y) |x =
ρ}, where ρ ∈ (0, B̄u

x (τ)]. Hence if Q̄u ∈ W̄u
l1

(τ) then xl1(t, τ, Q̄
u) corresponds

to a regular solution u(d, r). Now observe that if G1′ is satisfied, ‖B̄u
l1

(τ)‖ and
‖Āu

l1
(τ)‖ are uniformly positive and bounded for τ < 0. Therefore from Remark

2.12 we find that d(τ, Q̄u) > d(τ, Āu
l1

(τ)) tends to +∞ as τ → −∞; viceversa,
if d(τ, Q̄u) → +∞, then d(τ, B̄u

l1
(τ)) → +∞ and from Remark 2.12 we find that

τ → −∞.
Now assume that d(τ, Q̄u) → 0, we want to show that τ → +∞. Assume for

contradiction that there is M > 0, a sequence τn < M , and Q̄u
n ∈ ξ̄u

l1
(τn), such that

the corresponding d(τn, Q̄u
n) → 0. It follows that for any x > 0, Aτn

l1
(x) is uniformly

positive as n → +∞. So, from Remark 2.12, we find that there is δ > 0 such that
d(τn, Āu

l1
(τn)) > δ, for any n. So from (3.3) we find d(τn, Q̄u

n) > δ: a contradiction
and the claim is proved.

Assume further G2′ with l1 ≤ l2; it follows that B̄u
l1

(τ) is uniformly positive and
bounded for any τ ∈ R. Hence from Remark 2.12 we find that d(τ, B̄u

l1
(τ)) → 0 as

τ → +∞ and viceversa and from (3.3) we find that d(τ, Q̄u) → 0 as τ → +∞.
The proof concerning W̄ s

l2
(τ) follows using a similar argument and Remark 2.12.

¤

With similar arguments we can also prove the following:

3.6. Remark. Assume G1 with l1 < p∗. Then there is D > 0 such that u(d, r)
is a crossing solution for d > D and its first zero R(d) is such that R(d) → 0 as
d → +∞.

From Lemma 3.1 we easily get the following useful Remark.
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Figure 3. Construction of the unstable sets W̃u
l1

(τ) and W̄u
l1

(τ).

3.7. Remark. Assume that G1′ is satisfied and consider a trajectory xl1(t) such that
xl1(t) ↘ 0 as t → −∞. Then there is τ such that xl1(t) ∈ Ẽu

l1
(τ) for any t ≤ τ .

Analogously assume G2′ and consider a trajectory xl2(t) such that xl2(t) ↘ 0 as
t → +∞. Then there is τ such that xl2(t) ∈ Ẽs

l2
(τ) for any t ≥ τ .

Now we spend some words on the changes in system (2.2) when we pass from a
value l = i to a value l = j. We denote by ℵt

j,i(x) the diffeomorphism such that
ℵt

j,i

(
xi(t)

)
= xj(t), that is

(3.4) ℵt
j,i(x, y) =

(
x exp[(αj − αi)t], y exp[(βj − βi)t]

)
.

If we consider the modified polar coordinates introduced in (2.5), we find that ℵt
j,i

brings (ρ, θ) into (ρeδt, θ) where δ = p(p − 1) i−j
(i−p)(j−p) . Since the sets U0

l can be
defined by the relation θ = 1/(αl) arctan(|αl|p−1) so they are invariant for ℵt

j,i, for
any i, j > p. Also note that U0

j ⊂ U+
i and U0

i ⊂ U−
j if j > i.

Assume that G1′ and G2′ are satisfied; using ℵ we can define stable and unstable
sets for any l > p. We denote by ξ̃u

l (τ) the intersection of ℵτ
l,l1

[
W̃u

l1
(τ)

]
with U0

l

for l ≥ l1 (note that this intersection does not exist for l < l1), and by ξ̃s
l (τ)

the intersection of ℵτ
l,l2

[
W̃ s

l2
(τ)

]
with U0

l for σ < l ≤ l2 (again, this intersection
does not exist for l > l2). Then we denote by W̃u

l (τ) the connected component
of ℵτ

l,l1

[
W̃u

l1
(τ)

]\ U−
l containing the origin and ξ̃u

l1
(τ), and we give the analogous

definitions for W̃ s
l (τ). Then, repeating the argument developed after Lemma 3.4,

we can construct the sets W̄u
l (τ), W̄ s

l (τ), ξ̄u
l (τ), ξ̄s

l (τ). Reasoning in the same way
we can define also Wu

l (τ) for any l > p and Ws
l (τ) for any l > σ.

3.2. Basic properties of the function H and asymptotic results. In this sub-
section we give some further results concerning the asymptotic behavior of positive
solutions u(r), both as r → 0 and as r → +∞.

3.8. Remark. • If a solution u(r) of (1.4) is positive for 0 < r ≤ R, then
u′(r) < 0 for 0 < r < R.
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• Assume that for any x > 0 lim supt→+∞ gσ(x, t) < ∞. If a solution v(r)

of (1.4) is positive and decreasing for any r > R, then v(r)r
n−p
p−1 is strictly

increasing for any r > R. Moreover if w(r) is such that P (w(r), w′(r), r) < 0
for r ∈ (R1, R2), then w(r)r

n−p
p−1 is increasing in that interval.

• Assume that F (u, r)rn → 0 as r → 0, for any u > 0. Then, if u(d, r) is a
regular solution of (1.4), for the corresponding trajectory xp∗(t) of (2.2) we
have limt→−∞Hp∗(xp∗(t), t) = 0.

• Assume that for any x > 0 lim supt→+∞ gσ(x, t) < ∞. Then, if a solution
u(r) of (1.4) has fast decay, for the corresponding trajectory xp∗(t) of (2.2)
we have limt→+∞Hp∗(xp∗(t), t) = 0.

Note that the assumptions of Remark 3.8 are satisfied if G1′ and G2′ hold.
Now we extend to the non autonomous case some results already proved in the
autonomous case.

3.9. Lemma. Assume G1 and consider a trajectory xl1(t) of (2.2). If there is
tn → −∞ such that limn→∞ xl1(tn) = 0, then limt→−∞ xl1(t) = (0, 0). While if
limn→∞ ‖xl1(tn)‖ = +∞ then xl1(t) has to cross the coordinate axes infinitely many
times.

Analogously assume G2 and consider a trajectory xl2(t) of (2.2). If there is
tn → +∞ such that limn→∞ xl2(tn) = 0, then limt→+∞ xl2(t) = (0, 0). While if
limn→∞ ‖xl2(tn)‖ = +∞ then xl2(t) has to cross the coordinate axes infinitely many
times.

The proof can be obtained simply repeating the analysis of Lemma 2.7 and using
a continuity argument.

3.10. Lemma. Assume that there is l > p such that lim inft→+∞ gl(x, t) > 0
for any x > 0 and consider a trajectory xp∗(t) of (2.2) such that lim inft→+∞
Hp∗(xp∗(t), t) > 0. Follow xp∗(t) forward in t, then xp∗(t) has to cross the negative
yp∗ semi-axes. Analogously assume that lim inft→−∞Hp∗(xp∗(t), t) > 0, and that
there is l > p such that lim inft→−∞ gl(x, t) > 0 for any x > 0. Follow xp∗(t)
backwards in t, then xp∗(t) has to cross the positive yp∗ semi-axes.

Proof. Observe that we can rewrite (2.6) as follows

θ̇ = −pHp∗(xp∗(t), t)− pGp∗(xp∗(t), t) + xgp∗(xp∗(t), t)

| cos(θ)|2−p|ρp∗ |
p

p−1
< −p

Hp∗(xp∗(t), t)

| cos(θ)|2−p|ρp∗ |
p

p−1
,

if |t| > N , where N > 0 is defined in G0. If lim inft→±∞Hp∗(xp∗(t), t) > 0,
then θ(t) is decreasing for |t| large enough and admits a limit θ(±∞) as t → ±∞.
If θ(±∞) 6∈ [−π/2, π/2], xp∗(t) crosses the axes and we are done. If θ(±∞) ∈
[−π/2, π/2], from the previous inequality and (2.6) it follows that ρp∗(t) is un-
bounded and xp∗(t) is bounded. Since xp∗(t) is bounded and θ(t) admits a limit
it follows that limt→±∞ xp∗(t) ∈ U0

p∗ ; so yp∗(t) is bounded as well, a contradiction.
So xp∗(t) has to cross the coordinate axes. ¤

Now we prove a result concerning the existence and the asymptotic behavior of
singular and slow decay solutions.

3.11. Proposition. Assume G1 with l1 > σ, and that either l1 6= p∗ or l1 = p∗

and Gp∗(x, t) is monotone in t for any x and any t ≤ −M , for a certain M > 0.
Then there is a trajectory x̄l1(t) of the non-autonomous system (2.2) such that
limt→−∞x̄l1(t) = P−∞, where P−∞ is the unique critical point in R2

+\ {(0, 0)} of
the autonomous system where gl1(x, t) ≡ g−∞l1

(x).
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Figure 4. Existence of singular solutions when l1 > p∗ and P−∞

is a focus, and when σ < l1 < p∗ and P−∞ is a node.

Moreover if l1 > p∗ and there is ζ > 0 small so that limt→−∞eζt ∂
∂tgl1(x, t) = 0,

uniformly for any x in a compact subset of R2
+, then there are no other singular

solutions for (1.4).
Analogously assume that G2 is satisfied with l2 > σ and that either l2 6= p∗ or

l2 = p∗ and Gp∗(x, t) is monotone in t for any x and any t ≥ M , for a certain
M > 0. Then there is a trajectory x̄l2(t) of the non-autonomous system (2.2) such
that limt→+∞x̄l2(t) = P+∞, where P+∞ is the unique critical point in R2

+\ {(0, 0)}
of the autonomous system where gl1(x, t) ≡ g−∞l1

(x).
Moreover if σ < l2 < p∗ and there is ζ > 0 small so that limt→+∞e−ζt ∂

∂tgl2(x, t) =
0, uniformly for any x in a compact subset of R2

+, then there are no other slow decay
solutions for (1.4).

Proof. We just prove the claims concerning singular solutions: the ones regarding
slow decay solutions can be obtained reasoning in the same way.

In this proof we consider l = l1 in (2.1) fixed, so we leave the subscript unsaid.
Assume first l1 > p∗ and consider the autonomous system (2.2) where g(x, t) ≡
g−∞(x): the critical point P−∞ is asymptotically stable. Choose a point Q ∈ U0

close enough to P−∞ so that limt→+∞X(t, 0,Q, g−∞) = P−∞. Assume that there
are T2 > T1 > 0 such that X(t, 0,Q, g−∞) 6∈ U0 for t ∈ (0, T2)\ {T1} and it crosses
U0 at t = T1 and t = T2. Let us denote by ∂B̄ = {X(t, 0,Q, g−∞) | t ∈ [0, T2]}, by
Cb̄ the branch of U0 between X(T2, 0,Q, g−∞) and Q, and by B̄ the bounded subset
enclosed by Cb̄ and ∂B̄. Note that the flow of the autonomous system on Cb̄\ {Q}
points towards the interior of B̄. Now consider the non-autonomous system (2.2).
Through a deformation of the paths ∂B̄ and Cb̄ we can construct two closed paths
∂B and Cb with the following properties, see figure 4.

The set Cb is a branch of U0 which connects the endpoints of ∂B, which are the
two only intersections between ∂B and Cb. There is M large enough so that the
flow of the non-autonomous system (2.2) on (∂B ∪ Cb)\ {Q} points towards the
interior of the bounded set B enclosed by ∂B and Cb, for any t < −M . Such a
construction can be achieved from a continuity argument since g(x, t) → g−∞(x) as
t → −∞, uniformly on compact subsets. Using Wazewski’s principle, see [15], we
find that there is a trajectory x̄(t) of the non-autonomous system which is forced
to stay in B for any t < −M . Choosing M1 > M we can repeat the construction
choosing a smaller set B1 ⊂ B, and eventually we end up with a sequence of
numbers Mn → +∞ and of sets Bn ⊂ Bn−1 which shrink to {P−∞}, such that
the flow of (2.2) points towards the exterior of Bn for any t ≤ −Mn. So we obtain
a trajectory x̄(t) which converges to P−∞ as t → −∞.
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Making some slight modification we obtain the same result also in the case where
P−∞ is a stable node so that we cannot find the values T2 and T1.

If σ < l1 < p∗ with the same argument we can construct a sequence of sets
Bn−1 ⊃ Bn → {P−∞} and of values Mn → +∞ such that flow of (2.2) on ∂B and
Cb points towards the exterior of Bn for any t ≤ −Mn. So applying once again
Wazewski’s principle we prove the existence of a trajectory x̄(t) which converges
to P−∞ as t → −∞. In fact in such a case we have uncountably many of these
trajectories.

When l1 = p∗ and Gp∗(x, t) is monotone we proceed as follows. Let us denote
by h∗ = limt→−∞Hp∗(P−∞, t) or equivalently Hp∗ evaluated in P−∞ for the au-
tonomous system (2.2) where gp∗(x, t) ≡ g−∞p∗ (x). For any ε > 0 we can find M > 0
large enough so that for any t < −M we have minx∈R2

+
Hp∗(x, t) < h∗ + ε. Let

us denote by ∂Bε(t) the closed curve in R2
+ defined by Hp∗(x, t) = h∗ + ε and by

Bε(t) the bounded set enclosed by ∂Bε(t). Observe that from (2.4) we know that
Hp∗(x(t), t) is monotone in t for any trajectory x(t) of (2.2). So the flow of (2.2)
on ∂Bε(t) points towards the exterior, respectively the interior, of Bε(t) for any
t < −M . Then, using Wazewski’s principle, we find a trajectory xp∗(t) which is in
Bε(t) for any t ≤ −M . Letting ε → 0 (and consequently M → −∞) we find that
there is a trajectory x̄p∗(t) of the non-autonomous system (2.2) which converges to
P−∞ as t → −∞.

Now assume l1 > p∗ and that there is ζ > 0 small so that limt→−∞ ∂
∂tg(x, t)eζt =

0. Consider the autonomous system obtained adding to (2.2) the extra-variable
z = eζt, where ζ > 0 is the small constant defined in the hypotheses. Then ż = ζz.
It follows that the α-limit set of any trajectory is contained in the z = 0 plane, and
that this plane admits 3 critical points: the origin , P−∞, and −P−∞. Since l > p∗,
from the Poincarè-Bendixson criterion we find that the system admits no periodic
trajectories. Moreover the critical point P−∞ admits a one-dimensional unstable
manifold. In fact this argument also gives a simpler proof of the existence of singular
solutions, used e. g. in [18] (which however does not work in the general case).
Then using Lemmas 3.5 and 3.9 we get the uniqueness of the singular solution. ¤

Now we give a further result concerning the asymptotic behavior of singular and
slow decay solutions with weaker assumptions.

3.12. Proposition. Consider a trajectory xp∗(t) of (2.2) such that there are δ > 0
and T > 0 such that xp∗(−T ) > 0 and Hp∗(xp∗(t), t) < −δ for any t < −T . Then
the corresponding solution u(r) of (1.4) is a singular solution, hence limr→0u(r) =
+∞. Moreover, if G1′ is satisfied, then

lim inf
r→0

u(r)r
n−p

p > 0 and 0 < lim sup
r→0

u(r)r
p

l1−p < ∞ .

Analogously consider a trajectory xp∗(t) of (2.2) such that there are δ > 0 and
T > 0 such that xp∗(T ) > 0 and Hp∗(xp∗(t), t) < −δ for any t > T . Then the
corresponding solution u(r) of (1.4) has slow decay. Moreover, if G2′ is satisfied

lim inf
r→∞

u(r)r
n−p

p > 0 and 0 < lim sup
r→∞

u(r)r
p

l2−p < ∞ .

Proof. We just consider the case of slow decay solutions since the case of regular
solutions is completely analogous. Let us denote by Kl(t) = {xl ∈ R2

+ |Hl(xl, t) <
0}. From (2.3) it follows that the trajectory xl(t) corresponding to u(r) is such that
xl(t) ∈ Kl(t) for any l > p and any t > T . Thus u(r) is positive and decreasing
for r > eT . So from Remark 3.8 u(r)r(n−p)/(p−1) is increasing for r > eT and
n−p
p−1 xp∗(t)− |yp∗(t)|1/(p−1) ≥ 0. Assume for contradiction that there is a sequence
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tn → +∞ such that xp∗(tn) → 0. Then

Hp∗(xp∗(tn), tn) ≥ n− p

p
xp∗(tn)yp∗(tn) ≥ (n− p)p

p(p− 1)p−1
|xp∗(tn)|p → 0

as n → ∞, a contradiction. So lim infr→+∞ u(r)r(n−p)/p > 0, and in particular
u(r) has slow decay.

From G2′ we find that Kl2(t) is uniformly bounded for t > T1, hence lim supr→∞ u(r)r
p

l2−p <
∞. Observe also that the diameter of Kl2(t) is uniformly positive. Assume for con-
tradiction that xl2(t) → 0 as t → +∞, then either there is T2 > T1 such that
ẋl2(t) < 0 for t > T2, or there is a sequence tn → +∞ such that xl2(tn) is a local
maximum. Assume the forme; from Remark 3.7 we find that xl2(t) ↘ 0 as well as
t → +∞ and we conclude that u(r) has fast decay, a contradiction. Assume the
latter; we have that xl2(tn) ∈ U0

l2
and ẏl2(tn) ≤ 0. From G2′ it follows that there is

∆ > 0 such that the flow of (2.2) with l = l2 on U0
l2
∩{(xl2 , yl2) | 0 < xl2 < ∆} points

upwards. Therefore xl2(tn) > ∆ for any n and lim supt→+∞ xl2(t) > ∆ > 0. ¤

4. Applications

Now we give some new results concerning (1.4) when the non-linearity f(u, r) is
either subcritical for any u ≥ 0 and any r ≥ 0, or supercritical for any u ≥ 0 and
any r ≥ 0. In fact this situation has been studied in many papers, see e.g. [9], [20].
The main Hypothesis we will consider in this section is that Gp∗(x, t) is monotone
in t for any x > 0. More precisely we will assume either of these hypotheses:

H+: Gp∗(x, t) is increasing in t (strictly for some T ∈ R) for any x > 0.
H−: Gp∗(x, t) is decreasing in t (strictly for some T ∈ R) for any x > 0.

From (2.4) it follows easily that for any trajectory xp∗(t) the function Hp∗(xp∗(t), t)
is increasing in t if H+ is satisfied and decreasing if H− is satisfied. In order to
understand better the meaning of Hypotheses H+ and H− we observe the following.

4.1. Remark. Assume G1′ and G2′; if H+ holds then l1, l2 ∈ (p, p∗] while if H−

holds then l1, l2 ∈ [p∗, +∞).

Exploiting the results of the previous section we easily get the following.

4.2. Theorem. Assume that H+ holds, then all the regular solution u(d, r) of (1.4)
are crossing solutions. So u(d, r) is a solution of the Dirichlet problem in the ball
of radius R(d) > 0. Assume further G1′, then limd→0 R(d) = +∞. Moreover if
G1 holds and p < l1 < p∗, then R(d) is continuous and limd→+∞R(d) = 0.

Assume that H+ and G2′ are satisfied, then there are uncountably many S.G.S.
with fast decay. Finally assume that G2 holds, then there is one S.G.S with slow
decay w(r). In particular positive solutions have a structure of type Sub.

Proof. Consider a regular solution u(d, r) of (1.4) and the corresponding trajectory
xp∗(t) of (2.2). From (2.4) we know that Hp∗(xp∗(t), t) ≥ 0 for any t and that
lim inft→+∞Hp∗(xp∗(t), t) > 0. From H+ we know that lim inft→+∞Gp∗(x, t) > 0
for any x > 0. So we can apply Remark 3.8 and Lemma 3.10 to conclude that
u(d, r) is a crossing solution, whose first zero is R(d). Assume G1′ and consider a
trajectory xp∗(t, τ,Qu) where Qu ∈ ξ̄u

p∗(τ), and the corresponding solution u(d, r)
of (1.4). From Lemma 3.5 we know that τ → +∞ as d → 0, hence R(d) >
eτ → +∞ as d → 0. If G1 holds with p < l1 < p∗, from Remark 3.6 we find
that limd→+∞R(d) = 0. The continuity of R(d) follows from Remark 2.3 and the
continuity of the flow of (2.2).

Now assume that G2′ is satisfied, so that the stable set W̄ s
l2

(τ) is well defined
for any τ ∈ R. Choose Q ∈ W̄ s

l2
(τ) and consider the trajectory xl2(t, τ,Q), the

corresponding trajectory xp∗(t) of (2.2) with l = p∗ and the corresponding solution
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u(r) of (1.4): from Lemma 3.5 we know that u(r) has fast decay. Denote by (T,∞)
the maximal interval of continuation of xp∗(t). From H+ and (2.4) we find that
Hp∗(xp∗(t), t) ≤ 0 for any t > T . Thus xp∗(t) ∈ R2

± and it is bounded for any
t ≥ T , hence T = −∞. Moreover lim supt→−∞Hp∗(xp∗(t), t) < 0, so u(r) cannot
be a regular solution, see Remark 3.8. Hence u(r) is a S.G.S. with fast decay, whose
asymptotic behavior as r → 0 can be deduced from Proposition 3.12.

Assume further that hypothesis G2 is satisfied. Then, from Proposition 3.11 we
find that there is a trajectory xl2(t) such that limt→+∞xl2(t) = P+∞, where P+∞

is the unique critical point in R2
+\ {(0, 0)} of the autonomous system (2.2) where

gl2(x, t) ≡ g+∞
l2

(x); hence limt→+∞Hl2(xl2(t), t) < 0. Let xp∗(t) be the trajectory
corresponding to xl2(t). Then limt→+∞Hp∗(xp∗(t), t) ≤ 0 and Hp∗(xp∗(t), t) ≤ 0 for
any t and, reasoning as above, we conclude that xp∗(t) can be continued backwards
for any t and lim supt→−∞Hp∗(xp∗(t), t) < 0. So the corresponding solution u(r)
of (1.4) is a S.G.S. with slow decay. ¤

Using similar arguments we can prove the following.

4.3. Theorem. Assume that H− holds, then all the regular solution u(d, r) of (1.4)
are G. S. with slow decay and no S.G.S. with fast decay can exist. Furthermore if
G2′ holds there are uncountably many Dirichlet solutions w(D, r) in the exterior
of a ball, that is w(D, r) is null for r = D, it is positive for r > D and it has fast
decay. Moreover if G2 holds, then for any D > 0 there is a solution w(D, r) as
above.

Furthermore assume that G1 holds, then there is one S.G.S with slow decay
w(r). In particular positive solution have a structure of type Sup.

Proof. Let us consider a regular solution u(d, r) of (1.4) and the corresponding
trajectory xp∗(t) of (2.2). From (2.4) we know that Hp∗(xp∗(t), t) ≤ 0 for any t
and that lim inft→+∞Hp∗(xp∗(t), t) < 0. So xp∗(t) is forced to stay in R2

± for any
t and it has slow decay, see Proposition 3.12: so it is a G.S. with slow decay.

Now consider a fast decay solution v(r) of (1.4) and the corresponding trajectory
xp∗(t) of (2.2). From Remark 3.8 and (2.4) we have limt→+∞Hp∗(xp∗(t), t) = 0 and
Hp∗(xp∗(t), t) ≥ 0 for any t. So from Lemma 3.10 it follows that there is T such
that xp∗(T ) = 0, so v(r) can be nor a G.S. neither a S.G.S.

Assume G2′ so that we can construct the stable set W̄ s
p∗(τ), and choose Q ∈

W̄ s
p∗(τ). Reasoning as above we find there is T1 < τ such that xp∗(t, τ,Q) ∈ R2

±
for any t > T1 and it crosses the y positive semi-axis at t = T1. Then a priori we
lose uniqueness of the solution, however it is easy to show that for each trajectory
bifurcating from xp∗(T1, τ,Q) there is T2 < T1 such that xp∗(t, τ,Q) is positive for
t ∈ (T2, T1) and it becomes null at t = T2. It follows that the corresponding solution
v(r) of (1.4) solves the Dirichlet problem in the exterior of the ball of radius ln(T2).

If we assume also G2 with l2 > p∗, reasoning as in Theorem 4.2, we find that
T2 → +∞ as τ → +∞ and T2 → −∞ as τ → −∞.

If we assume G1 with l1 ≥ p∗, from Proposition 3.11 we find a trajectory xl1(t)
which converges to P−∞ as t → −∞. So the corresponding solution w(r) of (1.4)
is singular and limt→−∞Hp∗(xp∗(t), t) ≤ 0. So, reasoning as for regular solutions,
we find that w(r) is a monotone decreasing S.G.S. with slow decay. ¤

Note that Theorems 4.2 and 4.3 can be combined with Proposition 3.10 to obtain
better estimates on the asymptotic behavior of singular and slow decay solutions,
and to prove uniqueness of the S.G.S with slow decay w(r).

4.1. Some special cases. In this subsection we show how the hypotheses H+ and
H− may be weakened a bit, when we know the exact expression of the function
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f(u, r) (and consequently of g(x, t)). We discuss the case in which f is a finite sum
of terms of type (1.2):

(4.1) f(u, r) =
m∑

j=1

kj(r)u|u|qj−2 ,

but it is easy to check that a similar argument can be derived for other types of non-
linearities, (1.3) among them. We denote by hj(t) = kj(et) exp[(qj − p∗)(n− p)/p],
so that we can write gp∗(xp∗ , t) =

∑m
j=1 hj(t)xp∗ |xp∗ |qj−2, and we introduce the

following auxiliary functions which are borrowed from [20].

Ja
j (t) := kj(t)ent − qj

n− p

p

∫ t

−∞
kj(s)ensds

Jz
j (t) := kj(t)e(n−qj

n−p
p−1 )t + qj

n− p

p(p− 1)

∫ +∞

t

kj(s)e(n−qj
n−p
p−1 )sds

If f is of the form (1.2) we may replace hypotheses H+ and H− by the following:
H+

a : Ja
j (t) ≥ 0 for any t ∈ R and any j, but

∑m
j=1 Ja

j (t) 6≡ 0.
H+

z : Jz
j (t) ≥ 0 for any t ∈ R and any j, but

∑m
j=1 Jz

j (t) 6≡ 0.
H−

a : Ja
j (t) ≤ 0 for any t ∈ R and any j, but

∑m
j=1 Ja

j (t) 6≡ 0.
H+

z : Jz
j (t) ≤ 0 for any t ∈ R and any j, but

∑m
j=1 Jz

j (t) 6≡ 0.

It is easy to check that H+ implies H+
a and H+

z , while H− implies H−
a and H−

z .
Let xu

p∗(t) be a trajectory of (2.2) corresponding either to a regular or to a singular
solution u(r) of (1.4), and denote by (−∞, Tu) the maximal interval in which
xu

p∗(t) is positive and decreasing. Analogously let xv
p∗(t) be a trajectory of (2.2)

corresponding either to a fast or to a slow decaying solution v(r) of (1.4), and denote
by (T v, +∞) the maximal interval in which xv

p∗(t) is positive and decreasing.
Set limt→−∞Hp∗(xu

p∗(t), t) = A ≤ 0 and limt→+∞Hp∗(xv
p∗(t), t) = B ≤ 0; if H+

a

is satisfied, using (2.4) we have

Hp∗(xu
p∗(t), t) = A +

m∑

j=1

[
Ja

j (t)
|u(et)|qj

qj
−

∫ t

∞
Ja

j (s)(u(es))qj−1u′(s)ds

Hp∗(xu
p∗(t), t) = B +

m∑

j=1

[
Jz

j (t)
|xv

σ(t)|qj

qj
+

∫ t

∞
Jz

j (s)ẋv
σ(s)|xv

σ(s)|qj−1ds

So if H+
a is satisfied (resp. H−

a is satisfied) from Remark 3.8 we get that Hp∗(xu
p∗(t), t) ≥

0 (resp. Hp∗(xu
p∗(t), t) ≤ 0) for t ≤ Tu. Analogously if H+

z is satisfied (resp. H−
z is

satisfied) from Remark 3.8 we get that Hp∗(xu
p∗(t), t) ≤ 0 (resp. Hp∗(xu

p∗(t), t) ≤ 0)
for t ≥ T v. So we can repeat the argument of Theorem 4.2 and 4.3 and prove the
following.

4.4. Corollary. Assume f has the form (4.1).
If H+

a holds all the regular solutions are are crossing solutions. Assume further
that G1 holds and p < l1 < p∗. Then R(d) is continuous and R(0) = +∞ and
limd→+∞R(d) = 0. Assume that H+

z and G2′ are satisfied, then there are un-
countably many S.G.S. with fast decay. Finally assume that G2 holds, then there
is one S.G.S with slow decay w(r).

If H−
a holds, then all the regular solution u(d, r) of (1.4) are G. S. with slow

decay. Moreover if G1 holds, then there is one S.G.S with slow decay w(r). Assume
H−

z and G2′, then there are uncountably many Dirichlet solutions w(D, r) in the
exterior of a ball, that is w(D, r) is null for r = D, it is positive for r > D and it
has fast decay. Moreover if G2 holds and l2 < p∗, then for any D > 0 there is a
solution w(D, r) as above.



22 MATTEO FRANCA

5. Appendix: reduction of div(g(|x|)∇u|∇u|p−2) + f(u, |x|) = 0 and
natural dimension.

In this appendix we show how we can reduce the following equation

(5.1) (rn−1g(r)u′|u′|p−2)′ + rn−1f̄(u, r) = 0.

to (1.4), see [14] for more details. Set a(r) = rn−1g(r) and assume that one of the
Hypotheses below is satisfied

A1: a−1/(p−1) ∈ L1[1,∞]\ L1[0, 1]
A2: a−1/(p−1) ∈ L1[0, 1]\L1[1,∞)

Then we make the following change of variables borrowed from [14]. Let N > p be a

constant and assume that Hyp. A1 is satisfied; we define s(r) =
(∫∞

r
a(τ)−1/(p−1)dτ

)−p+1
N−p .

Obviously s : R+
0 → R+

0 , s(0) = 0, s(∞) = ∞ and s(r) is a diffeomorphism of R+
0

into itself with inverse r = r(s) for s ≥ 0. If u(r) is a solution of (5.1), v(s) = u(r(s))
is a solution of the following transformed equation

(5.2) (sN−1vs|vs|p−2)s + sN−1h(s)f(v, s) = 0,

where f(v, s) = f̄(v, r(s)) and

h(s) =
(

N − p

p− 1

)p (
g(r(s))1/pr(s)n−1

sN−1

)p/(p−1)

.

If we replace Hyp. A1 by Hyp. A2 we can define s(r) as follows s(r) =
(∫ r

0
a(τ)−1/(p−1)dτ

) p−1
N−p

and obtain again (5.2) from (5.1), with the same expression for h. We denote by
f(v, s) = h(s)f̄(v, r(s)) and obtain (1.4) from (5.2), with r replaced by s.

5.1. Remark. Note that, if for any fixed v > 0, f̄(v, r) grows like either a positive
or a negative power in r for r small, we can play with the parameter N in order to
have that, for any fixed u > 0, f(u, 0) is positive and bounded. E.g., if g(r) ≡ 1
and f̄(u, r) = rlu|u|q−1, we can set N = p(n+l)−n

p+l−1 , so that, switching from r to s as
independent variable (5.2) takes the form

(5.3) [sN−1vs|vs|p−2]s + CsN−1v|v|q−1 = 0 ,

where C =
∣∣N−p

p−1

∣∣p
∣∣∣ p−1
N−1

∣∣∣
n−1
N−p p

> 0. So we can directly study the spatial indepen-
dent equation (5.3), recalling that the natural dimension is N and this changes the
values of the critical exponents σ and p∗.
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