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Abstract

We prove the existence of positive radial solutions of the following
equation:
Amu — K (r)ulul!? + K?(r)ujul” > =0
and give sufficient conditions on the positive functions K*(r) and K?(r)
for the existence and nonexistence of G.S. and S.G.S., when ¢ < m* <p
or g = m"* < p. We also give sufficient conditions for the existence of
radial S.G.S. and G.S. of equation

Amu+ K (r)ulul?? + K?(r)ujul’> =0

when ¢ < p < m™ and m* < q < p respectively. We are also able to
classify all the S.G.S. of this equation.

The proofs use a new Emden-Fowler transform which allow us to use
techniques taken from dynamical system theory, in particular the ones
developed in [14] for the problems obtained by substituting the ordinary
Laplacian A for the m-Laplacian A,, in the preceding equations.

Key words and phrases:
M-laplace equations, radial solution, regular/singular ground state, Fowler trans-
formation, invariant manifold, energy function.
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1 Introduction
In this paper we will discuss positive radial solutions of the following equation:
Apu+ EH(r)ulul? 2 + B2 (r)ulul’ 2 =0 (1.1)

where A,,u = div(|Du|™2Du) is the so called m-Laplacian, 1 < m < ¢q < p,
|z| = r and z € R", n > m. We denote by m* = -* the Sobolev critical
exponent. The function k2(r) is always assumed to be positive; we will consider
the case in which k!(r) is negative and ¢ < m* < p, and the case in which k'(r)
is positive and the parameters ¢,p are both subcritical or both supercritical.
In particular we will focus our attention on the problem of existence of ground
states (G.S.), of singular ground states (S.G.S.) and of crossing solutions. By
G.S. we mean a positive solution u(z) defined in the whole of R" such that
lim,) o0 u(x) = 0. A Singular Ground State (S.G.S.) of equation (1.1) is a
positive solution v(z) such that

lim v(z) = 400 and lim w(z)=0.

|z|—0 |z| =400
Crossing solutions are solutions u(r) such that u(r) > 0 for any 0 < r < R and
u(R) = 0 for some R > 0, so they can be considered as solutions of the Dirichlet
problem in the ball of radius R. Here and later we write u(r) for u(z) when
|z| = r and w is radially symmetric.
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The corresponding autonomous equation is well studied and understood. In
particular in [5] it is proved that, when the potentials k' have opposite sign, the
G.S. of the autonomous problem can only be radial if 1 < m < 2. Moreover in
[10] the authors state the existence of radial ground states for the autonomous
problem when m > n and when n > m and ¢ < p < m*.

In this paper we only deal with radial solutions, so we shall consider the
following O.D.E.

-1
(u'l'| 72"+ S 7 K )l R =0 (1.2)

Here ' denotes the derivative with respect to . We will call regular the solutions
of (1.2) satisfying the following initial condition

uw(0) = ug >0 u'(0) =0 (1.3)

and singular the solutions which are not well defined in the origin and such that
lim,_,qu(r) = +00. Ni and Serrin, in [17], have also proved that the autonomous
equation where the constants k' have opposite signs, does not admit any G.S.
when ¢ < m* < p or ¢ = m* < p; the proof is a direct consequence of the
Pohozaev identity. In this paper we give a new proof of this fact and generalize
it to the non autonomous problem. To be more precise we prove that any
solution of the initial value problem (1.2) is positive and has positive lower
bound, whenever k'(r) < —d and k?(r) < D, where d, D are positive arbitrary
constants and k!(r) and k?(r) satisfy a monotony condition. This condition is
closely related to the one proposed by Kawano, Yanagida and Yotsutani in [16],
for the problem with one growth term. In this setting we are also able to prove
the non existence of S.G.S. We also give a decay condition on K! and a growth
condition on K?, that are sufficient for the existence of G.S. for Eq. (1.2).
Concerning this kind of equation we also wish to quote [9], in which the authors
state the existence of G.S. for the autonomous equation of the form (1.2) with
g < p <m*, and [4] in which it is studied the non-autonomous equation where
k'(r) = —1, and k*(r) is a positive function and m = q < p < m*.

In the fourth section we use a similar approach to investigate positive solu-
tions of the equation where both k!(r) and k%(r) are positive. In particular we
prove the existence of G.S. for Eq. (1.2), when m* < ¢ < p, and the functions
k'(r) and k*(r) satisfy certain monotonicity conditions. We also prove the ex-
istence of S.G.S., when m. < ¢ < p < m* and k'(r) and k%(r) satisfy opposite
monotony conditions. Here m, = % is the so called Serrin critical expo-
nent. As a consequence of the techniques applied we also find precise estimates
on the asymptotic behavior of positive radial solutions u(r) of Eq. (1.2), both
as r — 0 and as r — oo, both in the case of two positive potentials and in the
case of potentials with opposite signs. To be more precise we will prove that, as
r — 0 u(r) can only be bounded or behave like r~® where a > 0 is a constant
that will be specified later. Moreover decaying solutions can only have two kinds
of decay: fast decay, that is u(r) ~ r~m-1, or slow decay, that is u(r) ~ I
With the notation u(r) ~ r~% as r — a we mean that u(r)r® has positive and
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finite lower and upper bound as r — a. So, for both the equations, we classify
all the admissible S.G.S. of the problem.

The main tool introduced in this paper is a transform of Fowler type which
establishes a bijective relationship between the solutions of (1.2) and those of a
bidimensional non autonomous dynamical system, thus allowing us to reach a
geometrical understanding of the behavior of the solutions. In this way we can
apply techniques taken from the theory of dynamical systems to the problem,
in particular the ones developed in [13] and in [14] for the problem obtained
substituting the ordinary Laplacian A for the m-Laplacian A, in (1.1). More-
over we have introduced a new energy function closely related to the Pohozaev
identity which enables us to deal with the non autonomous setting.

The article is organized as follows: in section 2 we introduce the Fowler
transform and give the sufficient condition for the existence of G.S of Eq. (1.2).
In section 3 we deal with (1.2) assuming k'(r) < —d and k2(r) < D; in section
4 we discuss the case of two positive potentials, finally in section 5 we prove
some technical Lemmas concerning the asymptotic behaviour of the solutions.
In section 6 we make some heuristic observations regarding equations with a
m-Laplacian and some growth terms. In order to deal with positive functions
we will use the following notation that will be in force throughout all the paper:

K (r) = |k'(r)] K*(r) = [k*(r)] = K*(r)

We recall now two classical definitions which will be useful in the following
sections. Given a system of the form

z = f(x,t)

where f is Lipschitz continuous and a solution z(t), the a-limit set of z(t) is the
set
A={P:3t, » —oo such that lim z(t,) = P},

n—o0

while the w-limit set is the set

W ={P:3t, - +oo such that lim z(t,) = P}.

n—o0

One can show that, if z(¢) is bounded on R, then those sets are compact. More-
over if the system is autonomous these sets are invariant for the flow generated
by the system.

2 Fowler transform and existence results

We begin by considering the case in which k!(r) is negative; let us introduce
the Fowler transform for Eq. (1.2):

x = u(r)r® y = u'(r)|u (r)|™ 2P r=et
ht(t) = Kl(et)e’jt = Kl(r)r’j h2(t) = K?(eh)e™ = K2(r)r"
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where

o=t gD oot —g) n=atm®—p)

So Eq. (1.2) can be written as the following dynamical system

(5)=(5 %) () By f“,:i(t)%(m) ) e

where “” denotes derivation with respect to ¢ and v;(s) = |s|'~?s. To our
knowledge this particular transform has not appeared previously in the litera-
ture.

2.1 Remark. [Regularity hypothesis] It is worthwhile to point out that Eq.
(2.2) is C! if and only if g > 2 and 1 < m < 2.

If this hypothesis is not satisfied the right hand side of the differential equation
is not even Lipschitz when z = 0 or y = 0, so that local uniqueness of the
solutions on the xz and y axes is not anymore ensured; thus our use of the term
“dynamical system” is not quite rigorous. However we will see that most of the
proofs in this paper can be adapted also to the situation in which this regularity
hypothesis is not satisfied.

We give now a condition which ensures local existence for Eq. (1.2) with
initial values (1.3). We assume that such a condition is in force throughout all
the paper. There exists v < m such that the following condition is satisfied

K'(r) and K?(r) are continuous with their derivatives for any r > 0,

for every R > 0, sup{r “K*(r), rK?(r) : 0 <r < R} < oo.
What is really needed in our analysis is that the functions K* are just Lipschitz
continuous. In fact we could substitute the weak derivative to the classical
derivative through all the paper. However such regularity investigations are
beyond the purposes of this paper so we will use the classical derivative.

Readapting to this setting Proposition (6.1) in [15] we can prove that the

existence of solutions of Eq. (1.2) with initial values (1.3) is equivalent to the
existence of fixed points of the operator T : C(0,7) — C*(0,7)

Tu(r) = ug — /Orzp;f (tl—n /Ot f(u,s)sn—lds> dt (2.3)

where f(u,r) = —K'(r)u?+K?2(r)uP or f(u,r) = K'(r)u?+ K?(r)uP. Using the
Shauder’s Theorem it is possible to prove that the operator T has a fixed point
for any uog > 0. Furthermore, using the ideas of Proposition (6.1) in [15], we can
prove local uniqueness of the solutions of (1.2), (1.3) when k' > 0, and ¢ > 2
or when k' < 0 and the regularity Hypothesis is satisfied. If this conditions are
not satisfied local uniqueness is not ensured.
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2.2 Remark. When the regularity Hyp. is not satisfied, a priori Eq. (1.2) can
have positive solutions u(r) # 0 such that u(0) = 0. For such solutions it can be
easily shown that u'(r) > 0 for r in a right neighborhood of 0. These solutions,
if exist, have a behavior similar to regular solutions of Eq. (1.2). However they
will not be considered in this paper.

We point out now some elementary correspondences between Eq. (1.2) and
system (2.2).

2.3 Remark. Positive solutions u(r) of Eq. (1.2) correspond to trajectories of
Eq. (2.2) belonging to the halfplane R% := {(z,y) | « > 0}. Furthermore
decreasing solutions u(r) of Eq. (1.2) correspond to trajectories of Eq. (2.2)
belonging to the 4" quadrant and viceversa.

2.4 Proposition. Assume that lim;_,_o h'(t) = A > 0 and lim;_,_, h%(t) =
B > 0. Trajectories X (t) of Eq. (2.2) such that lim;,_X(t) = O = (0,0)
correspond to regular solutions u(r) of Eq. (1.2) and viceversa.

Trajectories X (t) of Eq. (2.2), which are well defined and belong to R3. for
t large, and satisfying lim; o X (t) = O correspond to solutions u(r) of Eq.
(1.2) which are well defined and positive for r large and have fast decay that is
u(r) = o(r~m=1), and viceversa.

The proof is rather technical so it is postponed to section 5, Lemmas (5.2),
(5.3) and (5.6). Note that if the regularity hypothesis is satisfied, using invariant
manifold theory for non-autonomous system, see [11] and [12], we can prove the
existence of an unstable and a stable manifold:

w .= {P| t_l)ir_nooXl(P;t) =0}, wWe = {P| tli)rgoXl(P;t) =0},

where X;(P;t) is the solution of Eq. (2.2) or (2.10) passing through P at ¢t = 0.
Therefore this observation together with Proposition (2.4) gives a proof for the
existence and local uniqueness of regular solutions of Eq. (1.2). Furthermore
when the regularity hypothesis is not satisfied, the existence of solutions of
(1.2) with initial values (1.3), ensures the existence of an unstable set for the
dynamical system (2.2), which was not a priori clear.

2.5 Remark. We will say that a positive solution u(r) has fast decay when-
ever u(r)r=-1 is bounded as r — oo, and that it has slow decay whenever
lim,n_mou(r)r% = +o00. A priori fast decay solutions may have compact sup-
port. It is worthwhile to point out that, if p < m, compact support solutions of
(1.2) do exist in the autonomous case, see Proposition 1.3.2in [9]. However when
the regularity hypothesis is satisfied, compact support solutions cannot exist,
since trajectory of (2.2) cannot reach the origin for ¢ finite. If the regularity
Hypothesis is not satisfied and the functions Ki(r) are unbounded, as
in Proposition (2.8), we cannot say wether fast decay solutions have
compact support or not.

The rate of decay of slowly decaying solutions depends on the functions K’
and the parameters ¢, p and will be specified in each case.
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Now we define an auxiliary function which will play a crucial role in the
following analysis:

m—1 m hi(t h2(t
H(z,y.t) = axy + "Ly = D O
m q p

First of all we observe that by differentiating we get

4 Ha(t) yie).p) = - OB O (2.4

We begin by making some strong assumptions (which will be weakened later
on), in order to simplify the situation. Let us assume at first

h'(t)=A>0 h*(t)=B >0 (2.5)

If hypothesis (2.5) is satisfied then (2.2) becomes the following autonomous

system . .
(3)=(5 %) (5)( AU ) eo

Let us fix A, B > 0; in such a case the function H does not depend on ¢, thus
m—1 m A B
H(z,y) := axy + ——y|»—1 — —[z]" + —|z]".
m q p

2.6 Observation. Eq. (2.6) admits exactly 3 critical points, which coincides
with the critical points of H: the origin O = (0;0), P = (P,, P;) and —P where
P, >0 and P, < 0.

Consider the level sets of the function H Cp = {(z,y) | H(z,y) = b}.
We claim that lim|,|4)y|—c0 H (7,y) = 0o. In fact assume for contradiction that
there is a sequence (z,,y,) such that |x,|+ |yn| — oo such that H(x,,y,) —
M < oo. Observing that p > ¢ > 1 we get that |z,| — oo implies |y,| — 0.
Analogously from m/(m — 1) > 1 we get that |y,| — oo implies |z,]| — oo; so
we can assume that both |z, | and |y, | are unbounded. We can assume without
losing of generality that =, > 0 > y,. Note that for n large we have

B _ m—1 _m
Ep(ayn + —|TnlP ™) + ——|ya|mT < 2M
P m

(we have neglected the contribution of the term |z|? which is small with respect
to |z|?). Thus |y,| > a%|a:n|p’1. Analogously

m—1 1 B _
Yn(axn — ———|yn| ™7 + —|zp|" 1) <2M
m p

Therefore using the previous estimate we get the following

m—1 ! (m —1)BY/(m=1)
|yn|m71 >

|2 |(p71)/(m71)_
m al/(m=1)pt/(m=1) ™"

axy, >
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Figure 1: Sketch of the level sets of the function H(x,x2,T), for T fixed. The
solid line is the level set Cp, the dotted and the dashed lines represent some
level sets C, where respectively b < 0 and b > 0.

But this sis a contradiction, since p > m, so the claim is proved.

Note that H(0) = 0 and H(P) = H(—P) = —b* < 0. Therefore —b* is the
minimum for H. We collect some information concerning the shape of the level
sets Cp in the following Lemma, see also Fig. (1).

2.7 Lemma. Fach level set Cy, for —b* < b < 0 is made up by two closed
bounded curves symmetric with respect to the origin. One of them is contained
m ]Rf_. The level set Cy is made up by the union of two closed curves connected
by the origin. The level sets Cy for b > 0 are closed bounded curves which cross
the coordinate axes.

Note that when the assumption (2.5) is satisfied, “H” represents a first
integral of (2.6), so we are able to draw each trajectory of the system. We are
ready to state now a classification result for positive solutions.

2.8 Proposition. Consider Eq. (1.2) where (2.5) is satisfied, and the corre-
sponding autonomous system of the form (2.6). Then we can give the following
classification result for positive solutions.

A All the trajectories corresponding to some positive value H(z,y) = b > 0
are periodic and cross the axis. They correspond to singular solutions
u(r) of (1.2) with infinitely many positive maxima and negative minima;
moreover there exists a > 0 such that —ar™® < u(r) <ar™® Vr > 0.

B The trajectory corresponding to H(z,y) = 0 is homoclinic to the origin;
this means that all the regular solutions u(r) of (1.2) are G.S., each of
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which has exactly one critical point which is a maximum, and with decay
rate o(r~m-1) at co (fast decay).

C All the trajectories corresponding to some negative value H(x1,x2) = —b >
H(P) are periodic and belong to R . They represent S.G.S. u(r) of Eq.
(1.2) with rate of decay and growth ~ r~% respectively at oo and at 0.
There exists —b < 0 such that if —b* < H(z,y) < —b, the corresponding
S.G.S. is monotone decreasing, while if —b < H(x,y) < 0 it has infinitely
many mazima and minima (that corresponds to the trajectory crossing the
x aris).

D For the value H = H(P) we have one fized point P = (P,, P,), which
corresponds to a monotone decreasing S.G.S of (1.2) of the form u(r) =
P,r=% where we recall that P, = P,(A, B).

2.9 Remark. No other solutions u(r) positive in a right neighborhood of r = 0
can exist but the ones described and G.S. with u(0) = 0, see remark (2.2). We
recall that, if the regularity Hyp. are not satisfied, a fast decay solution may
have compact support. Correspondingly the homoclinic trajectory may reach
the origin in finite ¢.

Proof. The proof of the Proposition easily follows from Lemma (2.7) and Propo-
sition (2.4). O

Now we enumerate some Hypotheses that will be used in this and in the
following sections. For the definition of h] and h} see (2.9).
Hypotheses

Mon 7!(t) > 0 and h2(t) < 0 and one of the inequalities is strict for a certain
t.

M1 Both h!(t) and h%(t) are monotone for t — —oo; lims—, _oh'(t) = A >0
and lim;_, .h%(t) = B > 0.

M2 Both h!(t) and h%(t) are monotone for t — 0o; lim;_,ooh!(t) = A > 0 and
lim;_, o h2(t) = B > 0.

M3 There exists [ > m, but [ # m*, such that lim;,_. h} () = A > 0 and
lim;_, _oo h}(t) = B > 0. Furthermore for a certain £ > 0

1 2

o dK 1y, 01+E—1 _ o dK oy mtE—1 _
711_r)r(1)(r7+61K ) =0 and }1_%(7“7 +mK)r =0

M4 There exists I > m, but [ # m*, such that lim;_,oo b} () = A > 0 and
lim; o h7(t) = B > 0. Furthermore for a certain £ < 0

Kt K2
lim (rdd— + 6 KHr =0 and  lim (rdd— +pK2)rmte-t =
r r

r—0o0 r—0o0
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2.10 Theorem. Consider Eq. (1.2); assume that Hypotheses Mon and M2 are
satisfied.

o Then all the regular solutions u(r) of (1.2) are G.S. with slow decay that
isu(r) ~r~% asr — oo.

e For any G.S. u(r), there exists a S.G.S. v(r), solution of (1.2) where
hi(t) = A >0, and h*(t) = B > 0, such that:

lim [u(r) — v(r)]r* = 0.

00

2.11 Remark. The hypothesis of the Theorem are satisfied if we assume p = m*
and that K2(r) is strictly positive and monotone decreasing, and for example
K'(r) = ﬁ
Proof. Suppose at first that lim; , ., h%(t) < co and that lim;_, o, ht(t) > 0.
Using Proposition  (2.4), we know that trajectories X () = (&(t),§(t))
of (2.2) corresponding to regular solutions @(r) of (1.2), are such that
limy o H(Z(t),9(t),t) = 0. From Lemma (2.7) it follows that the sets D(t) :=
{(z,y) | = >0 H(z,y,t) < 0} are open bounded subset, for any ¢. Since
sup,cp h'(t) < oo and infyer h?(t) > 0, it follows that the sets D(t) are uniformly
bounded with respect to t.

controlla

Hypothesis Mon implies that H is decreasing along the flow, so we know
that, for any ¢, the trajectory X (t) is forced to stay in D(t), so it cannot cross
the y axis; this means that no crossing solutions u(r) of (1.2) can exist. Then
observing that X (t) is bounded ad bounded away from the y axis for any ¢, we
deduce that u(r) ~r~* as r — 00, so @(r) is a G.S. with slow decay.

To prove the second claim we need to rewrite (2.2) as an autonomous system

by introducing an extra variable 7 = r~! = ¢t
@ a 0 0 x yly| =1
7y |l=10 —a 0 y |+ B (=InT),(z) — h*(—In7),(z)
T 0O 0 -1 T 0

(2.7)
First of all we observe that the plane 7 = 0 is invariant for the flow and that
the w-limit set of each bounded trajectory of (2.2) has to belong to this plane.
Consider again the trajectory X (t) = (&(t), §(t), 7(t)) corresponding to u(r),
and let © be its w-limit set. Then 2 lies in the plane 7 = 0. Moreover () is
invariant with respect to the flow on the z —y plane defined by Eq. (2.6), where
A = lim;_,ooh'(t) and B = lim;_,,,h%(t). Now recalling Propositions (2.8) we
observe that exists a solution of (2.6) for any given admissible negative value
of H. We observe now that the limit lim;_, ., H(Z(t), §(t),t) exists since H is
decreasing and bounded below by the value of H at the critical point P of Eq.
(2.6). Therefore we can conclude that each trajectory of (2.2) converges to one
of the periodic trajectory of Eq. (2.6) or to the critical point P. This proves
the claim.
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Now assume that lim; , .h!(t) = 0 or lim;_, o,h%(t) = co. Then we ob-
serve that the sets D(t) continues to be bounded for any given ¢, but we do not
know anything about lim;—, o H(0,0,t).

Let us consider a trajectory (z(t),y(t)) of (2.2) corresponding to a regular
solution u(r) of (1.2). Fix T we define

[ H@®).y).T) ift<T
HT‘{ WD) iEtsT (28)

Differentiating with respect to ¢t we get

4 - { —[RM(T) = B (8))i|o] 172 + [R2(T) — B2 (t)|iz|alr= ift<T
dt %H(l‘(t),y(t),t) ift>T

Now observe that for any given (z(t),y(t)) corresponding to a solution u(r) of
(1.2), (1.3) we can choose T = T(ug) such that & >0 for t < T.

In fact otherwise there would exist a sequence t,, = log(r,) — —oo such that
%(t) < 0, which implies

I, =0 st au(ry) < —u'(rg)rg.

Therefore for n — oo we get au(0) < 0, a contradiction. Note that our definition
of H depends on ug; however, given ug, the corresponding sets

D(t) = {(z,y) | Hr(z(t),y(t),t) <0},

are uniformly bounded with respect to t. Since we have assumed that —h!(t)
and h2(t) are decreasing, we have that

%f[(w(t),y(t),t) <0 and lim_ Hr(z(t),y(t),t) = Hr(0,0,t) = 0.

Therefore the solution of (2.2) is forced to stay in the set D(t) for any #; so it
represents a G.S. with slow decay u(r) of (1.2). O

We prove now two Lemmas concerning the forward and backwards continuability
of the trajectories of (2.2). Note that we allow the potentials K*(r) to tend to
0 or to co as r — o0.

2.12 Lemma. Consider Eq. (1.2) and assume that Hypothesis Mon is satisfied.
Then any solution u(r) can be continued forward in r for any r > 0.

Proof. Consider a trajectory X (t) = (x(¢),y(t)); we want to show that it can
be continued forward in ¢, for any t. Assume for contradiction that there exists
T < oo such that that X(¢) is unbounded as ¢t — T~; then there exists a
sequence t, — T~ such that lim, o, H(z(t,),y(tn),tn) = +00. Observe now
that, from Hyp. Mon, it follows that H(z(t),y(¢),¢) is decreasing for any t,
so we have found a contradiction. Therefore any solution of (1.2), regular or
singular is continuable forward for any r > 0. O
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We introduce now some notation for system (2.7)
Cci= {(mlaylaT) | mlzo}

Ut = {(z,y,7) | # >0} and U~ :={(z,y,7) | @ <0}

We will use the same notation also for the bi-dimensional systems obtained by
removing the variable 7, and for system (2.10) to be introduced below.

2.13 Lemma. AConsider Eq. (2.2) and assume that Hypothesis Mon is satisfied.
If a trajectory X (t) = (&(t),y(t)) is unbounded backwards in t, then it must cross
the coordinate axes indefinitely many times.

Proof. We consider system (2.2) and we want to follow X (¢) backwards in ¢.

From (2.4) we know that H (X (t),t) is monotone decreasing with respect to t;
therefore there exists T such that 0 < M/2 < H(X(t),t) < M. We denote the
level sets H(-,T) = 0 and H(-,T) = M of the function H(-,T) by Co(T") and
Crp(T). We call E(t) the open bounded subset enclosed by Cy(t), for t < T
and Cp(T). We recall that D(T) = {(z,y) | H(z,y,t) < 0}. Observe that
X(T) is contained in E(T); assume that X(T) € U~. When ¢t < T we have
that h'(t) < hY(T) and —h2(t) < —h?(T) therefore the flow on Cy(T) N U~
is always going towards the exterior of E(t). Furthermore the flow on Cy(¢) is
always going towards the exterior of E(t) for any t. Therefore following X (t)
backwards in ¢ we find that it is forced to stay in D(t) NU ™~ until it crosses the
isocline ¢. Since in D(¢t) N U~ & and y are uniformly positive, there exists a
value t = ¢; < T finite such that X (¢;) crosses c.

Now we want to prove that there exists t3 such that X (¢3) crosses the positive
y semi axis. Assume for contradiction that X (t) € RZ for any ¢t < t;. We can

assume that X (¢) € U*, for ¢ < t; until it crosses the isocline ¢. Note that
H(X(t),t) > 0, for t < ¢, therefore, analyzing Fig. (1), we see that the
trajectory X (t) cannot cross the isocline ¢ while it is in R%, thus &(t) < &(t1)
for t < t;.

Observe that |H (X (t),t)] is finite for ¢ finite. Therefore H (X (t),t) is bounded
for ¢ finite, which implies that X (¢) is bounded. Therefore X (¢) can be continued
backwards in ¢ for any t.

Observing that Z(¢1) < oo and that fl—f is strictly positive for ¢t < t; — € we
have that there exists 3 such that #(¢3) = 0, which is a contradiction. Thus
X (t) crosses the positive y semi axis, for ¢ = t3. For continuity reasons there
exists ts such that t3 < t5 < t; for which X (t) crosses the z positive semi axis.

Now we prove that there exists t4 < t3 such that X (t4) € ¢ and Z(t4) < 0.
Consider the function Hy, (X (t)) obtained setting T = #5 in (2.8). Note that
%ﬁtg (X(#)) > 0 for t < t3, until X(t) € U* and #,(t) < 0. Therefore X (t) is
bounded and can be continued backwards until it crosses the isocline ¢. Since
H(X(t),t) > 0fort < t3, X (t) is bounded away from the critical point, therefore
X (t) crosses the isocline for some finite ¢ = t4. Iterating the reasoning it is now
possible to prove that, if X (¢) becomes unbounded going backwards in ¢, then
it must cross the coordinate axes indefinitely many times. O
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We wish to point out that we have also implicitly proved the following
Lemma.

2.14 Lemma. Assume that Hypothesis Mon is satisfied and consider a trajec-
tory X (t) = (2(t),9(t)) of Eq. (2.2). If there exists t such that H(X (t),t) >0,
then X (t) must cross the coordinate azes backwards in t indefinitely many times.

Now we need to introduce a new transform, a bit more general than the one
already used.

o = 2, B = (T_;rll)l, v =P8 —(n-1), I>m
z; = u(r)re yr = u'(r)|u (r)|m 2 r=cet (2.9)
¢r(t) =K' (e") =K'(r),  ¢*(t) = K*(e") = K*(r),
hi(t) =@M (t)e’!,  hi(t) = ¢*(t)e™!

where 6 = (I —q) = m (1 - %), and g = oq(l — p) = (1 - %) This
new transform enables us to control the growth of the functions h} (¢) and h?(t)
when ¢ — +o00. Observe that if we set | = m* we obtain again the change of
variables (2.1). From now on we will denote the quantities obtained through
the change of variables (2.9) with [ = [ with the subscript /; when we refer to
(2.9) with [ = m* we omit the subscript.

So we will denote by (t) a trajectory of (2.2), by #;(¢) the corresponding
trajectory of (2.10) and by 4(r) the corresponding solution of (1.2).

Note that if we set I = ¢ we obtain hj (t) = ¢'(t), and with [ = p we have
hi(t) = ¢*(t). Applying (2.9) to (1.2) we obtain the following dynamical system:

. 2—m
Z a 0 ) < z ) < yilyr| =1 )
. = + 2.10
G )= (8 ) G G isonen ) @
We will also make use of the following dynamical system where we have added
the extra variable 7 = €%, which is useful to analyze the asymptotic behaviours:

x a 0 0 x; v Iyz | =
v |={ 0 0 yo | | b0 (@n) — hi (@) gp(z) | (211)
7 0 0 ¢ T 0

We wish now to stress which are the signs of a constant which will be useful
later on.
>0 ifandonlyif < m*,
ap+v <=0 ifand onlyif [=m",
<0 if and only if > m*.
We state another Proposition concerning the asymptotic behaviour of positive

solutions, which generalizes Proposition (2.4). Once again the proof follows
from Lemmas (5.2), (5.3) and (5.6), so it is postponed to section 5.
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2.15 Proposition. Assume that Hypothesis Mon and M3 are satisfied. Tra-
jectories X (t) of Eq. (2.10) such that lim;, X (t) = O correspond to regular
solutions u(r) of Eq. (1.2) and viceversa.

Assume that Hypothesis Mon and MJ are satisfied. Trajectories X;(t) of
Eq. (2.10), which are well defined and belong to ]Rﬁ_ for t large, and satisfying
limi, o X (t) = O correspond to solutions u(r) of Eq. (1.2) which are well
defined and positive for r large and have fast decay that is u(r) = o(r_%),
and viceversa.

We introduce now another auxiliary function:

|ze|* + || =

n—m m—1 m hi(t)
H t t),t) == + — m—_1
l(ml( )7yl( )7 ) m iy m |yl| q

=H (z(t),y(t), t)e(a’+7’)t.

h(t)
p

Observe that differentiating we get

d d

aHl(xl (t)a yl(t)7 t) = (al + 'YI)HI(-TI (t)7 yl(t)a t) + e(al+W)taH(m(t)a y(t)7 t)'
Assume that there exists [ > m., such that hj(f) = A > 0 and h7(t) = B > 0.
Then system (2.10) admits exactly three critical points: the origin, P = (P,, P,)
where P, < 0 < P, and —P. Moreover, using Poincare-Bendixson criterion we
can prove the following.

2.16 Observation. System (2.10), admits no periodic trajectories whenever hj (t) =
A and h}(t) = B > 0.

Proof. Note that % + g—z = a+ v > 0. Assume for contradiction that there

exists a periodic trajectory X (¢) of period T, and call its graph OB and B the
bounded set enclosed by dB. Then

T .
di dy
0:/ a':g)—g]:bdt:/ :bdy—g)dm:/ — + —)dzdy > 0.
0 ( ) oB B(dﬂf dy)
So we have found a contradiction and the claim is proved. O

2.17 Proposition. Assume that either Hyp. M1 or M3 is satisfied. Then there
exists at least one singular positive solutions v(r), that is a solution v(r) which
is well defined and positive in a right neighborhood of r = 0 and behaves like
~ 7 Tm asr — 0.

Furthermore assume that the reqularity Hyp. and M3 are satisfied and that
I is such that m. <l < m*, then v(r) is the unique singular solution, so if u(r)
is positive in a right neighborhood of r = 0, then u(r) is reqular or u(r) = v(r).

Proof. Assume that the regularity Hyp. is satisfied and consider system (2.11)
where we set [ and £ > 0 as in Hyp. M3. Assume m, <[l < m*. Using Lemma
(2.13) we deduce that trajectory of (2.11) which are unbounded backwards in
t cannot correspond to positive solutions wu(r) of (1.2). Note that the a-limit
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set of any bounded trajectory is contained in the plane 7 = 0. The technical
Hypotheses on the functions K'*(r) ensures that system (2.11) is Lipschitz con-
tinuous when 7 = 0. From Lemma (2.16)we know that the plane 7 = 0 does not
contain any periodic trajectory. Thus bounded solutions of system (2.11) must
have P the origin or —P as a-limit set. Therefore the corresponding solutions
v(r) are respectively singular and v(r) ~ = as r — 0, regular, or negative as
r = 0.

By a straightforward computation we deduce that P admits a two dimen-
sional stable manifold and a one dimensional unstable manifold. The latter one
is transversal to the plane 7 = 0, so it is made up exactly by one trajectory
Xl(t) such that limt%,ooXl(t) = P. This trajectory corresponds to a singular
positive solution #(r) such that o(r) ~ r~* as r — 0, and no other solutions
u(r) of (1.2) which are positive as r — 0 can exist but regular solutions and
v(r).

If I > m* the unstable manifold is 2-dimensional, therefore we lose the
uniqueness result. However we can still find at least one trajectory like Xl(t).
Note that for the existence result we do not need the regularity Hyp., since P
is far from the coordinate axes. O

3 Non existence results

In this section we give some non existence result for crossing solutions, G.S. and
S.G.S. in a more general setting.

3.1 Theorem. Consider Eq. (1.2) and assume that there are positive constants
d,D > 0 such that K'(r) > d and K?(r) < D for r large, and that Hypotheses
Mon is satisfied. Then all the solutions u(r) of (1.2) can be continued for any
r > 0 and are always strictly positive, thus no crossing solutions can ezist.
Moreover no G.S nor S.G.S. can exist either.

Proof. Consider any solution #(r) of (1.2) such that lim, ,,(r) = 0. Sup-

pose at first that limT%OOKl(r)rf% < 00; we can choose | < m* in such
a way that hj(t) and h}(t) are bounded as ¢ — co. For example if K'(r) is
bounded we can choose | = ¢q. Using Lemma (5.2) we deduce that v(r) corre-
sponds to a trajectory X;(t) = (z;(t),7:(t)) of (2.10) such that lim;_, ., X;(t) —
(0,0). Thus lim¢, oo H;(Z(t),5:1(t),t) = 0 and, since ag + 7 > 0, we also
have lim; oo H(Z(t),3(t),t) = 0. Therefore for the corresponding trajectory
(Z(t),y(t)) obtained setting I = m* in (2.9) we have H(Z(t), §(t),t) > 0 for any
t.

Following this trajectory backwards in ¢, using Lemma (2.14) we deduce that
(Z(t),y(t)) has to cross the coordinate axes indefinitely many times, therefore
o(r) is an oscillatory solution.

Now we assume that K*(r) grows like rm=1 or faster. Consider again a
decaying solution 0(r) and the corresponding trajectory (&(t),y(t)) obtained
through (2.9) with I = m*. We want to show that there exists T such that

H(&(T),9(T),T) > 0 and then conclude with Lemma (2.14). From Lemma
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(5.2) we know that lim;,..Z(t) = 0, and it can be proved easily using (5.2)
that there exists £y > —oo such that §(to) = 0, §(t) < 0 for t > to and that
lim;_,¢(t) = 0. Moreover, for ¢ large

t
0< —j(t) = / (k' ()&(s)"" + B2 ()2 (s)P~") dis
to

Recalling that h2(s)z(s)?~! — 0 we deduce that —h!(s)Z(s)?"! is bounded
with respect to s. Thus lim; o — hl(s)L‘:)q = 0 from which we deduce
lim—, oo H(Z(t),y(t),t) = 0. Since H(&(t),y(t),t) is decreasing we have that
it is positive or any ¢t. Thus we can remove the assumption on the growth of
K'(r).

Now we turn to consider the regular solutions wu(r) of (1.2) and the cor-
responding trajectories (z(t),y(t)) of (2.2). Using the truncation Hy defined
by (2.8), we find that Hrp(z(t),y(t),t) is decreasing and negative, therefore
H(z(t),y(t),t) < 0 for ¢ > T. Then we recall that from lemma (2.7) we know
that the curves H(z,y,t) = 0 are bounded for any ¢ finite, thus we can deduce
the continuability and the positiveness of u(r). We have seen that decaying
solutions v(r) cannot be always positive. Therefore for any given u(r) there
exists a sequence 7, — oo such that u(r,) > § > 0 for any n. O

Observe that for any fixed value R there exist a constant b(R) such that
F,(R)<0 if and only if 0 <u(R) <b(R)

Let us call b* > 0 the value such that — + = 0. Now assume

that both the functions —K!(r) and K2(r) are monotone decreasing for r large.
From theorem (3.1) we already know that all the solutions of the problem are
positive; we want to show that they oscillate indefinitely between two positive
values, and that they are uniformly bounded for r large. To this purpose we
define the following functions taken from [10]:

Alp*|? B|b*|P
q p

|u(r)]”

ﬂmm:wvmmw*+ﬁwmvw*,F@wwzwmﬁ%ﬁ+ﬁm .

E(u,u',r) := mn: 1 [u'(r)|™ + F(u,r).

3.2 Corollary. Suppose that Hyp. Mon is satisfied and assume ¢ < m* <
p. Moreover assume that both the functions —K'(r) and K?(r) are monotone
decreasing for r large. Then all the regular solutions u(r) (and the singular,
if they exist) of Eq. (1.2) are strictly positive for any r > 0, and uniformly
bounded for r large. More precisely for any u(r) we have

0 < liminf u(r) < limsup u(r) < b*. (3.1

r—+00 r—00

Proof. We already know that the solutions w(r) are positive. Differentiating
E(u,u’,r) we get the following

n—1 d

4 it ) — o & [HOIT | d o)l
B, r) = = ()" - LK ()

—K? <
. + o (r) » <0,
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for r large. Thus E(u,u/,r) is lower bounded and monotone decreasing for r
large, so it admits a limit. It is enough to prove that lim, . E(u,u’,7) = M < 0
then (3.1) follows. Assume that lim,_,u'(r) = [ exists, then it easily follows
that [ = 0. Therefore we have that F(u,r) converges as well. Assume for
contradiction that lim,_, . F (u,r) > 0, then lim,_, o f(u,r) > 0, so from (1.2)
it follows that (u'|u/|P~2(r))" < —§ for r large and a certain § > 0. But this
contradicts lim, . u'(r) = 0.

Now we assume that u'(r) does not converge as r — 00, so it changes sign
indefinitely for r large. Then there exists a sequence of local minima 7, — oco.
So

Fu(ry) = Eu(ry) > Ey(ri+1) = Fu(res1) — TILI&E(U,UI,T) =M

for any k large enough. From equation (1.2) we easily deduce that, if u(rg) is a
minimum, then f(u(rg),rr) < 0. Therefore F(u(ry),rr) < 0 as well, thus M <
0. Therefore it is easy to see that u(r) must oscillate indefinitely between the
two positive values ¢y, ¢o such that —A% + w = —A% + % =M 0O

3.8 Remark. Reasoning as in the proof of the Corollary it can be shown that for
each maxima and minima u(rg) of a positive solution u(r) we have Fy(rg) < 0
and this gives an estimate on the values of u(ry).

4 Analysis of the equation with two positive
growth terms

Now we look for sufficient conditions for the existence of radial G.S. of the
following equation:

n —

(Y (u)) + 11/Jm(ul) + K ()b (u) + K2 (r)ih,(u) = 0 (4.1)

r

Here as usual we assume K'(r) > 0 and K?(r) > 0 for » > 0. We introduce
some functions closely related to the one introduced in [16]. Here and later we
set t = log(r); let us define

K'(r) | K2(0)
q p

G(r) := 1™ ( ) _n ;m /0 s"HE (s) + K2(s))ds =

= Gy(r) + Gp(r)

t 1 aqs t 2 aps
where Gq(r):/ dhds(s)eq ds and Gp(r):/ dhdS(s)ep ds

We recall the definition of the Pohozaev function, taken from [10].

— 00

n—m

w(r)u' (r)|u' ()™ + 7" E(u, v/, ) where

E(u,u',r) :ZmT_lllﬂ(r)lm + Kl(r)w + K%(r) |“(;)|p ,
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Note that
n—m m—1 _m h'(t), . h(), .,
Pulr) = H(0,5(0),8) = "=y + "2y 71 4 2 D japr 4 20
We can rewrite (2.4) in the following way:
Py(r) = Gq(r)fu(r)|* + Gp(r)u(r)|” -
(4.2)

—/ (aGq(8)|u(9)1"™2 + pGy(s)lu(s)[P~*) u(s)u'(s)ds
0
We will also make use of the following auxiliary functions

* dht(s) s  dh?(s) e*P®
Ju(r) = /t P ds and Jpy(r) = /t P ds.

to obtain the following relation

Pu(r) = Tim Py(r) = Jy(r)[u(r)|7 = Jy(r)lu(r)P+

o0 (4.3)
[ @+ pl ) ul(s)ds

For convenience of the reader we rewrite system (2.2) in this setting.

(o) =(8 )G+ —h}(t)%@f’)”%(t)%@» ) s

First of all we remark that Proposition (2.4) holds also in this setting. The only
difference is that we can refine the asymptotic behavior of fast decay solutions
giving a lower estimate on the decay. To be more precise a trajectory of (4.4)
having the origin as w-limit point correspond to a fast decaying solution u(r)

such that u(r) ~ r~ =1 . Furthermore we can exclude the existence of nontrivial
solutions satisfying the condition 4(0) = 0. The proof of this claim and a more
precise statement of the result is postponed to Lemma (5.5) and (5.4) in section
5. We will also use the following autonomous system.

Z o 0 0 x yz|yl|?"__‘w{
g = 0 % o v |+ = O (xr) — b (O)p(zr) | (4.5)
7 0 0 ¢ T 0

As in section 2 we begin by assuming that system (4.4) with [ = m* is au-
tonomous, that is h'(t) = C1 > 0, hi(t) = C> > 0 and 0 < C; + C> < co. We
recall that when we refer to the change of variable (2.9) with [ = m* we leave
the subscript unsaid. Also in this case system (4.4) admits exactly 3 critical
points: the origin, P = (P,, Py) and —P, where P, < 0 < P,, and the function
H is a first integral. As done in section 2, fixed T', we will denote by Cy(T") the
level sets {(z,y) | H(x,y,t) = b}. Note that if 0 < h'(t) + h%(t) < oo the level
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sets of the function H are continuous deformations of the one depicted in Fig.
(1). The level set Co(T) is a 8-shaped curve contained in the 2"¢ and in the 4"
quadrants. The level sets Cy(T') for 0 > b > H(P) are closed bounded curves
contained in the interior of the set enclosed by Co(T"). The level sets Cy(T") for
b > 0 are closed bounded curves crossing the coordinate axes.

We are ready to state a result analogous to Proposition (2.8).

4.1 Proposition. Consider Eq. (4.1) and assume that h'(t) = A > 0 and
h2(t) = B > 0, where A+ B > 0. Then we can classify positive solutions as
follows.

A All the trajectories corresponding to some positive value H(z,y) = b > 0
represent periodic trajectories which cross the axis. They correspond to
singular solutions u(r) of (1.2) with infinitely many positive maxima and
negative minima; moreover there exists a > 0 such that —ar—* < u(r) <
ar”® Vr>0.

B The trajectory corresponding to H(z,y) = 0 is homoclinic to the origin;
this means that all regular solutions u(r) of (4.1) are monotone decreasing

G.S. with decay rate ~r~m-1 at co (fast decay).

C All the trajectories corresponding to some negative value H(x1,x2) = —b >
H(P) represent periodic trajectories which belong to ]Ri. They represent
S.G.S. u(r) of Eq. (1.2) with rate of growth and decay ~ r~—% respectively
at 0 and at co.

D For the value H = H(P) we have one fized point P = (P, P,), which
corresponds to a monotone decreasing S.G.S of (1.2) of the form u(r) =
P,r—% where we recall that P, = P, (A, B).

We enumerate now some Hypotheses that will be used in this section.
Hypotheses

Sup G,(r) <0 and G,(r) < 0 for any r > 0 and at least one of the inequality
is strict for a certain r = R > 0.

Sub G,(r) > 0 and G,(r) > 0 for any r > 0 and at least one of the inequality
is strict for a certain r = R > 0.

Sub* J,(r) > 0 and J,(r) > 0 for any r > 0 and at least one of the inequality
is strict for a certain r = R > 0.

N1 limy,_h'(t) = A < 0o and lim;_,_,.h%(t) = B < oo, where A + B > 0.

N2 There exists s > m., such that the limit lim;_, _, hL(t) + h2(t) is positive
and finite. Furthermore for a certain £ > 0

o dK! 1,0, +E—1 . dK* 2\ M +E—1
71013%(7“? + 3, K)r =0 and hm(rv +nsK°)r =0.

r—0
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N3 limy,h!'(t) = A < 0o and lim;_,,h%(t) = B < oo, where A + B > 0.

N4 There exists L > m,, such that the limit lim;_,, h} (t) + h%(t) is positive
and finite. Furthermore for a certain £ < 0

K! K?2
lim (rdd— +6 KNt~ =0 and lim (rdd— +nL K2ttt = 0,

r—00 r r—o0o r

4.2 Remark. To satisfy the Hyp. Sup is enough to take ¢ > m* and K' > 0
constant or decreasing and K2 constant or not increasing too fast (but it can be
unbounded or tend to 0 as t — 00). Assume that K!(r) is strictly positive and
bounded, if ¢ = m* Hyp. N3 is satisfied, while if m, < ¢ < m* Hyp. N4 with
L = q is satisfied. Analogously to satisfy Hyp. Sub we can take m, < p < m*
and the functions K monotone increasing.

Consider a trajectory X(t) of Eq. (4.4) corresponding to a positive solution
u(r) of (4.1). Note that whenever H (X (t),t) < 0 we have that X (¢) is in the
4th quadrant, thus u/(r) < 0. Thus we can deduce the following

4.8 Remark. Consider a regular solution u(r) of Eq. (4.1) defined and positive
for any r > 0. If Hyp. Sup is satisfied then P,(r) < 0 for any r; therefore
for the corresponding trajectory of Eq. (4.4) we have H(x(t),y(t),t) < 0 and
lim sup,_, . H(z(t),y(t),t) < 0. Analogously if Hyp. Sub is satisfied, we have
P,(r) > 0 and liminf;—, H (z(t),y(t),t) > 0.

We give now a technical remark that will be useful to analyze asymptotic
behaviour of positive solutions.

4.4 Remark. Assume that Hyp. Sub is satisfied, then there exists ¢ > 0 such
that h'(t)+h2(t) > € for t large. Analogously assume that Hyp. Sup is satisfied,
then there exists M > 0 such that h'(t) + h2(t) < M for t large.

Proof. Assume that Hyp. Sub is satisfied. It is enough to prove that h'(t) is
strictly positive for ¢ large. Suppose for contradiction that lim inf; .. h'(t) = 0,
then for any € > 0 there exists T'(¢) > 0 such that h'(T(¢)) —e = 0. Suppose at
first that liminf; , ., h'(t) > € therefore we can assume that inf;7 h!(t) = e.
We define g(t) = h'(t) — e. Then

t dhl t dg
< = —_— @gs = —_— @gs .
0 < qGy(r) /oo h (s)e*?®ds / I (s)e*?®ds (4.6)

—00
Integrating by parts and setting t = T we have

T T

g(s)e*®ds = —aq/ g(s)e*??ds

—00

0 < g(T)e™ — aq/

— 00

Thus we have found a contradiction since we have assumed ¢(t) > 0 for ¢t < T.
Now assume that liminf; , .,h'(t) = 0, then for any € > 0 there exists Tp(e)
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such that g(Tp) = 0 and g(¢) > 0 for any Ty < t < T. Thus we can rewrite (4.6)
in the following way:

o dn' Td
0 S/ I (s)e®ds -|-/TO d—i(s)eaqsds <

— 00

To T

< WY (Tp)e™ ™™ — aq ( h'(s)e™*ds + /

To

g(s)eaqsds> <

— 00

T
< ee¥To —/ g(s)e*?ds
To

Note that when ¢ — 0 then Tp(e) = —oo and T'(€) — +o0, thus the right hand
side in the last inequality is negative, so we have found a contradiction. O

Now we reformulate in this setting Lemmas (2.12), (2.13), (2.14); we skip
the proofs since they can be obtained working as in section 2 and recalling the
previous remark.

4.5 Lemma. Consider Eq. (4.1) and assume that Hyp. Sup (respectively Sub)
is satisfied. Then any solution u(r) can be continued forward (resp. backwards)
in v for any v > 0. Furthermore consider Eq. (4.4); if a trajectory X(t) =
(Z(t), g (t)) is unbounded in t, then it must cross the coordinate axes indefinitely
many times. Therefore it cannot correspond to a positive solution u(r) of Eq.

(4.1).
4.6 Lemma. Consider a trajectory X (t) = (2(t),5(t)) of Eq. (4.4).

o Assume that liminf,_,_ o H(X(t),t) > 0, then X(t) must cross the coor-
dinate azes backward in t indefinitely many times;

o Assume that liminf, . H(X(t),t) > 0, then X (t) must cross the coordi-
nate axes forward in t indefinitely many times.

4.7 Theorem. Assume that Hypotheses Sub and N3 are satisfied, then all the
solutions u(r) of Eq. (4.1) are G.S. with decay of order ~ r=¢.

Assume further that the functions h'(t) are monotone for t large. Then for
each G.S. u(r) there exists a S.G.S. v(r) of the frozen equation Eq. (4.1) where
K'(r) = Ar=% and K*(r) = Br" such that lim,_.(u(r) — v(r))r® = 0.

4.8 Remark. Theorem (4.7) as all the Proposition of this section can be trivially
generalized to the situation in which we have a finite sum of terms. To be more
specific fix v € N and consider the following equation:

-1
(o |72+ P [ K g, () o+ K g, () =0 (4)
Assume that G, (r) < 0 for any r > 0 and any 4; moreover assume that the

functions h'(t) are monotone for ¢ large and 0 < limy_,oo >, h¥(t) < co. Then
all the solutions of (4.7) are G.S. with decay of order ~ r~%. Moreover assume
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that 0 < Y7, limyoohi(t) = Y./, A; < oo, then for each G.S. u(r) there
exists a S.G.S. v(r) of the frozen equation Eq. (4.7) where Ki(r) = Ar—% and
such that lim, oo (u(r) — v(r))r* = 0.

The proof is completely analogous to the case of 2 terms, so we will deal
with this setting which involves less heavy notation.

Proof. We repeat the same reasoning made for Theorem (2.10). We intro-
duce the change of variables (2.9) in order to deal with system (4.4) where
I = m*. Consider a regular solution u(r) of (4.1) and the corresponding
trajectory X (t) = (x(t),y(t)). First of all notice that with our assumptions
H(z(t),y(t),t) < 0. Thus we know that X(¢) is forced to stay in the set
H(z,y,t) < 0 for any ¢, so we can conclude that it represents a ground state.
Furthermore lim sup,_, . H(z,y,t) < 0 so X (¢) is bounded away from the coor-
dinate axes, for ¢ large. Thus u(r) ~r~ as r — co.

To prove the statement regarding the asymptotic behavior of the ground
states we can repeat the reasoning made at the end of the proof of Theorem
(2.10), that is to introduce the system (4.5) where £ < 0. Then observe that
the w-limit set of the solutions is a subset of the 7 = 0 plane. We recall that
the restriction of this system to the 7 = 0 plane corresponds to the autonomous
system whose behavior has been described in theorem (4.1). Now recall that,
with our assumption H (z(t),y(t),t), admits a limit and that the value of this
limit characterizes exactly one periodic trajectory of the autonomous problem
and conclude. O

Consider system (4.5) with & < 0. Let us define
Si(r) = {(zi,y1,7) | Hi(zy,y,t) <0 where 1 = et}

and S; = U;>05i(7). Note that if h} (t) + h7(t) — 0 as t — oo, then Sj(r)
becomes unbounded as 7 — 0, while if A} (t) + k7 (t) — oo then the closure S;()
of S;(7) shrinks to the origin. Therefore the proof of Proposition (4.1) must be
modified slightly. From Proposition (5.4) we know that fast decay solutions u(r)
of (4.1), correspond to trajectories X (¢) of (4.4) having the origin as w-limit set.
We analyze now positive solutions with slow decay.

4.9 Proposition. Assume that the functions h'(t) are monotone for t large
and there exist [o > lo > m* or m, <ly < ly < m* such that

v v
hiriil;p ; hi,(t) = oo and htrglorgf ; hy,(t) = 0. (4.8)
Moreover assume that for a certain & < 0
K 1,61, = (K7 2,1y —€
rlgglo(TW + 0, K )Yzt =0 rlgglo(TW + 6, K°)rM=2=5 =0 (4.9)

Consider a solution u(r) which is well defined and positive for r large. Then
w(r) ~ "W asr — oo ( fast decay ), or u(r) has slow decay, that is

Cir =7 <u(r) < Cor @7  as r — o0, (4.10)
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Proof. Consider system (4.5) with £ < 0. Note that, even when the regularity
hypothesis is not satisfied, the system is Lipschitz continuous in S;(7) for any
7 > 0. Furthermore note that the technical Hyp. (4.9) ensures that the system
is Lipschitz continuous also for 7 = 0 when [ <.

Consider a positive solution @(r) of (4.1) and the corresponding trajectory
X(t) = (2(t),5(t),7(t)) of (4.5). We recall that the limit lim,_,, H (X (£),1) =
M exists, since H(X (t),t) is monotone for ¢ large. Note that the only critical
point of the system with [ < l5 is the origin. Furthermore, applying Poincare-
Bendixson criterion we find that no periodic trajectories can exist in the subset
where z > 0 and y < 0. From Lemma (4.6) we know that if M > 0 X (¢) must
cross the coordinate axes indefinitely many times, therefore it cannot correspond
to a positive solution. Thus we can assume M < 0. Note that if M = 0 we
have that X (¢) converge to the origin so it correspond to a solution @(r) with
fast decay. Thus we can assume that M < 0. Now observe that the origin is
the only critical point of the system. Assume for contradiction that X (t) is
bounded, then its 2-limit set is contained in the subset where x > 0, y < 0 and
7 = 0, where there are no periodic trajectories or critical points. Thus X(t) is
unbounded and it is easily deduced that lim;_,~,&(t) = co. Let us fix I =y and
consider the corresponding system (4.5) with £ < 0. Then once again we have
lim¢_, 0o @y, (t) = 00. In fact X (t) cannot be bounded since otherwise we would
have the origin as w-limit set. In this case, using Lemma (5.4), we deduce that
a(r) ~ r~ =T but this is in contradiction with lim;_,o#(t) = co. Let us fix
now [ = Iy and consider the corresponding system (4.5) with ¢ < 0. Then we
have lim;_, o1, (£) = 0; in fact X, (t) € S(r) as 7 — 0 and S(0) is the origin.

Thus solutions u(r) with slow decay must satisfy (4.10) O

4.10 Proposition. Assume that the functions hi(t) are monotone for t large.

e Assume that Hyp. Nj is satisfied then a slow decay solution 4(r) is such
that u(r) ~ rT=m+1 asr — 00.

o Assume that Hyp. N2 is satisfied then a singular solution u(r) is such that
a(r) ~ r=m¥1 gsr — 0.

Proof. We begin by the first claim. Fix | = L and consider system (4.5)
with £ < 0. Repeating the reasoning done in Proposition (4.9) we find that
lim;_, o H(Z(t),5(t),t) < 0. Note that S;() is bounded and have positive mea-
sure as 7 — 0. Therefore we have that Zr(t) is bounded. System (4.5) with
I = L has three critical points: the origin, P = (P,, P,0) where P, < 0 < P,
and —P. Reasoning as above we see that trajectory converging to the origin
correspond to fast decay solutions and trajectories converging to P correspond
to slow decay solutions. The second claim can be proved in the same way
considering system (4.5) with £ > 0 and [ = s. O

4.11 Theorem. Assume that Hypotheses Sup and Nj are satisfied then all the
reqular solutions are G.S. with slow decay, (see Proposition (4.10)). Further-
more assume that Hyp. N2 is satisfied then there exists one S.G.S. with slow
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decay. Moreover if the functions hi(t) are monotone as t — —oo and s # m*
the S.G.S. is unique and no other positive solutions can ezist.

Proof. We have already seen that regular solutions u(r) of (4.1) correspond to
trajectories X (¢) of (4.4) such that lim;—, H(X(t),t) = 0. From Hyp. Sup
it follows that H(X(t),t) < 0 for any ¢ and also limsup,_, . H(X(t),t) < 0.
Thus we deduce that X () € S(r(t)) for any ¢, which implies that u(r) > 0 and
u'(r) < 0 for any r > 0. Assume that Hyp. N4 is satisfied. From the fact that
lim sup,_, . H(X (t),t) < 0 we get that X (¢) cannot have the origin as w-limit
set. Therefore, reasoning as in Proposition (4.10) we get that u(r) must have
slow decay.

Now assume that Hyp. N2 is satisfied and consider system (4.5) obtained
setting I = s and £ > 0: in the subset x > 0 the critical points are the origin
and a point P = (P,, —P,,0) where P, and P, are positive constants. Assume
at first that s # m* and that the functions h’(t) are monotone. Then the point
P admits a one-dimensional unstable manifold Wp, transversal to the direction
of the plane 7 = 0. Wp is in fact made up exactly by one trajectory, say
X, (t) = (&5(t),ys(t),7(t)). Note that lims_, o Hs(X,(t),t) < 0, thus repeating
the proof just developed for regular solutions, we find that H (X (t),t) < 0 for
any t and limsup, , . H (X (t),t) < 0. Therefore the corresponding solution @(r)
represent a S.G.S. with slow decay. The uniqueness and the non-existence result
follow from the asymptotic estimates of Proposition (4.10). If s = m* or if the
functions A’ are not monotone we lose the uniqueness result but we can still find
an unstable manifold and prove the existence result. O

4.12 Remark. To satisfy the hypotheses of Theorem (4.11) we can take, e. g.,
p > q > m*, Ki(r) and K»(r) strictly positive and decreasing. In this case
for the singular solution u(r) we have u(r) ~ r~#== as r — 0 and slow decay

m

solutions u(r) are such that u(r) ~r~ o= asr — oco.
4.13 Corollary. Assume that Hyp. Sup is satisfied. Then

e if we are in the Hyp. of Proposition (4.9) we can still get the same clas-
sification result for positive solutions but the estimates on the asymptotic
behavior of solutions singular in the origin or with slow decay, are the ones
described in Proposition (4.9)

o Assume that lim,_,oo Y, Ki(r)r™ = 0, then all the solutions u(r) have
positive finite limit and the singular solution G(r) too. No G.S., S.G.S. or
crossing solution can exist.

Proof. The first claim can be obtained simply repeating the proof of Theorem
(4.11). Suppose that lim,_,« >, K*(r)r™ = 0, then the regular solutions u(r)
of (4.1) are positive and monotone decreasing for any r > 0, and are such that
lim, o u(r)re = oo, for any € > 0. In fact, reasoning as done before we find that
for any I > 0 we have z;(t) — co. Repeating the proof at page 738 in [16] we

n—m

can conclude that, if a solution v(r) tends to 0 as r — oo, then v(r) ~r~ =1,
Thus regular solutions have positive finite limit. Reasoning in the same way we
get the same conclusion for singular solutions as well. O
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We can now give a new proof of a well known result, see [15]

4.14 Proposition. Assume that Hyp. Sub is satisfied. Then all the reqular
solution u(r) of Eq. (4.1) are crossing solutions.

Proof. Consider a regular solutions u(r) of (4.1). The corresponding trajectory
X (t) = (x(t),y(t)) of (4.4) is such that H(x(t),y(t),t) > 0 for any t > T for a
certain T, therefore the Proposition follows from Lemma (4.6). O

Now we give the following classification result for positive solutions

4.15 Theorem. Consider equation (4.1) and assume that Hyp. Sub* is satis-
fied. Assume that Hyp. N2 and Nj are satisfied. Then there exists a S.G.S. with
slow decay 0(r), that is 5(r) ~r == asr — 0 and 6(r) ~ 7 T-m as r — oo.
If we assume that the reqularity hypothesis is satisfied there exist also infinitely
many S.G.S. with fast decay w(r): w(r) ~r~ =m asr — 0 @(r) ~r =1 as
r — 00.

Proof. Consider system (4.5) with £ < 0 and | = L < m*. Note that it admits
a critical point P = (P, P,,0). We have that P admits a one-dimensional
stable manifold, which is made up of exactly one trajectory, say Xp(t) =
(Zr,(t), 95 (t),7(t)), such that lims o Hr, (21, (t),§r(t), (t)) < 0. It follows that
also limy_,oo H (£(t), 9(t), (1)) < 0. Consider the corresponding solution #(r) of
(4.1). Note that lim,_,.Ps(r) < 0. We follow 9(r) backwards in r and from
(4.3) we have P;(r) < 0 until ¢'(r) < 0. Since §(t) < 0 for ¢ large, and g(t) < 0
whenever P;(r) < 0 we have that H(Z(¢),4(t), (t)) < 0 for any ¢ and Ps(r) <0
for any r. Furthermore lim;_,_ .. H(Z(¢),4(t),(t)) < 0. Consider now system
(4.5) with € > 0 and | = s. Since lim;—, o H(Z(t), §(t), (t)) < 0 we have that
X, () cannot converge to the origin. Therefore o(r) cannot be a regular solution.
Recalling Proposition (4.9) we have that o(r) is a S.G.S. with slow decay.

Now we turn to consider S.G.S. with fast decay. Assume that the regularity
Hyp. is satisfied and consider again system (4.5) with £ < 0 and [ = L. The
origin admits a 2-dimensional stable manifold which is transversal to the 7 =
0 plane. Consider any trajectory X (t) belonging to this manifold and the
corresponding solution @(r) of (4.1). Repeating the reasoning made for slow
decay solutions, we find that w(r) is a S.G.S. with fast decay. O

4.16 Remark. If we replace Hyp. N4 by Hyp. N3 we continue to have a S.G.S.
with slow decay and infinitely many S.G.S. with fast decay, but we cannot a
priori exclude the existence of multiple S.G.S. with slow decay.

Furthermore, if we replace Hyp. N2 with Hyp. N1 or with an estimate of
type (4.8) and (4.9) as t — —oo, Theorem (4.15) continue to hold, but we have

respectively v(r) ~ 7~ "% and Cor 2-7 <u(r) < Cir -7, asr — 0.

5 Asymptotic Behavior

In this section we collect some Lemmas concerning the existence, local unique-
ness and asymptotic behavior of positive solutions u(r) of Eq. (1.2) and Eq.
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(4.1) when r — 0 and r — co. In particular we want to prove Propositions (2.4)
and (2.15). In this section we will denote with C' > 0 different constants whose
value is changing from line to line.

First of all, if we assume that the regularity hypothesis is satisfied, we can
prove a partial result exploiting invariant manifold theory. Assume that we can
set [ in (2.9) in such a way that both h} () and h?(t) are bounded for ¢ — —o0.
Let us call X;(Q;t) = (x;(t),yi(t)) the solution of (2.2) passing through @ at
t = 0. Exploiting a paper by Johnson [12] based on [11], we can prove that
there exists an unstable manifold W* such that

“i={Q 1 lim_Xi(@5) =0},

Consider a solution XZ(Q t) such that @ € W% for any ¢ > 0 we have
limg s oo X7(Q;t)e(=119t = 0. Thus the corresponding solution u(r) is such
that lim,_,ou(r)r® = 0. Furthermore reasoning as in Observation 3.17 in [6] we
can prove that u(r) is strictly positive and bounded for r small. This way we
also give an alternative proof of local existence of solutions of (1.2) with initial
values (1.3).

Analogously assume that there exists another value L in (2.9) such that both
hl (t) and h3(t) are bounded for t — co. Reasoning as above we can prove the
existence of a manifold W*¢ := {Q | lim;—, o X1.(Q;¢) = 0}. Furthermore for any
€ > 0 we have lim;_,, X1,(Q; t)e”72"¢ = 0. Reasoning as above we can conclude
that the corresponding u(r) is such that u(r) < Cr=*¢*7Z for r large.

When the regularity Hyp. is not satisfied we cannot anymore apply the
previous reasoning. However existence and local uniqueness of regular solutions
of (1.2), (1.3) can be proved working directly on the equation, see [9]. We
can also improve the estimate on the asymptotic behaviour using some integral
manipulations.

First of all we remark that, when r is positive and finite, we can rewrite Eq.
(1.2) and Eq. (4.1) in the following way:

(Nl () ol (1)) = = (K ()t + Rty
Let us suppose that
lim 7"~ (r) o/ (r)|™ 2 = 0, (5.1)

r—a
or equivalently that
lim t)e~ Mt =0
t—slog(a) yl( ) )

then we have the following:

—u' (r)|u' (r)|™ 2 = / f(u,s)s" ds. (5.2)

5.1 Remark. Note that in Section 2 and 3 we are always in the Hypothesis
of Lemma (2.13) and in Section 4 we are in the Hypothesis of Lemma (4.5).
Therefore for any positive solution we can always find a > 0 such that (5.1) is
satisfied.
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Now suppose that there exists a, b such that «'(r) < 0 for any r € (a,bd) and
lim, o v 1w/ (r)|u/(r)|™ 2 = 0. Let us consider r; and ry belonging to (a,b),
then we have the following formula for u(r):

1

w(ry) — u(rs) = / (tl—n /atf(u,s)s"_lds> " (5.3)

5.2 Lemma. Consider Eq. (1.2) and assume that there exist two positive con-
stants d, D such that k'(r) < —d and 0 < k*(r) < D for any r. Consider a
positive solution u(r), well defined in a left neighborhood of r = 0o and converg-
ing to 0 as r — oo; then it must have fast decay, that is lim,ﬂ_mou(r)r% is
finite.

Proof. We begin by proving that u(r), if exists, cannot converge to 0 oscillating
indefinitely.
In fact otherwise, applying Eq. (5.2), we could find sequences aj, — oo and
by — 00, ar < by < agy1, such that
b
pln f(u(s),s)s" tds = 0. (5.4)

ag

We can find a constant [ large enough so that
flu(),l) < —du(l)? + Du(l)? < 0.

So if we choose k large enough we have f(u(s),s) < 0 for ax < s < by, but this
contradicts Eq. (5.4). Therefore there exists a > 0 such that u'(r) < 0 for any
r > a. Moreover

0 < lim _UI(T)|UI(T)|m_2rn_1 — /oo f(u(S),S)Sn_ldS <

r—00
. (5.5)
< / fu(s),s)s" 'ds = M < .
Therefore using Eq. (5.5) in Eq. (5.3) we find
o'} t ml—l
u(r) :/ {tln/ f(u(s),s).s”lds} dt <
T o (5.6)
< / [t M) ™ T dt < Cr~ et
O

We can repeat this kind of reasoning also in slightly different settings.

5.3 Lemma. Consider any positive solution u(r) of Eq. (1.2) where k' =

—Ar= w2 (M =0 gnd k2 = Br™ =" =) | corresponding to a trajectory having

the origin as a-limit point. Then 0 < u(0) < 0o and lim,_, s u(r)r==1 < co.
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Proof. First of all note that the corresponding dynamical system is (2.6), so
it is autonomous. Therefore u(r) corresponds to a trajectory corresponding
to the level set Cy of the function H, see section 2. Thus u(r) is monotone
increasing for r small therefore u(0) < oco. Observe that, under the hypothesis
of theorem (2.8), we have that for any ground state u(r) we get f(u(r),r)r" ! =
(—Az? + BxP)r—! < 0 for r large. Therefore we can repeat the proof just given
and conclude. O

5.4 Lemma. Consider system (4.4) obtained setting | > m, in such a way that
both hj (t) and hi(t) are bounded ast — oo. Consider any positive solution u(r)
corresponding to a trajectory having the origin as w-limit set. Then u(r) must

have fast decay, that is lim,_,oou(r)r =1 is finite and positive.

Proof. We need to prove that there exist two positive constants d and D such
that

d< Ju/|™" Tt = /T fu(s),s)s"'ds = I(r) < D (5.7)

for any r large enough. Then using (5.3) with r; = r and rs = co we have the
thesis. First of all observe that f(u(s),s) > 0 for any s > 0, therefore the left
hand side inequality of (5.7) is trivially satisfied. In this proof we set [ in (2.9)
as in the Hypothesis of the Lemma and leave unsaid the subscript. Since we
consider solutions such that u(r) — 0 as r — co. We can assume without losing
of generality that K;(r)u?=! < f(u,r) < CK;(r)u?~! for r large. This way we

find:
t

ly(t)|e= "t =I(r)=C » )w(s)q_lhl(S)e_”’sds.
og(a

Observe that there exists a positive constant ¢(0) < n — % = —~ such that

I(r) < Cr°® . We begin by proving that z(¢) and y(t) tends to 0 exponentially
so 0(0) < —v. Note that, if the regularity hypothesis is satisfied, this fact is
easily observed using invariant manifold theory.

Moreover, if h!(t) — 0 exponentially, as ¢ — co, we are done. Otherwise
observe that there exists T' > 0 such that #(¢) < 0 for ¢ > T. In fact assume
for contradiction that #(¢) changes sign indefinitely many times for ¢ large,
then there exists a sequence ¢, — oo such that x(t,) > P, (t,), where P(s) =
(P (s), Py(s)) is the critical point of the frozen autonomous system (4.4) where
h' = h'(s) and h? = h%(s). But this is a contradiction since z(t) — 0 as t — oo.
So az(t) < |y(t)|ﬁ Analogously we have that y(t) > 0 for ¢ large.

Suppose for contradiction that there exists a sequence s, — oo such that
for any € > 0 g(sp) = |y(sp)e"| — oco. We may assume that g(s,) > g(t) for
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t < s, Let us define Ji, = (sg, Sg41)-

ly(sn)| = Ce™*¥ / z(s)1 Rt (s)e™"¥ds <
log(a)

N-1
<Cer™N (C+ Z/ |y(8)|:1_11h1(s)673ds> <
k=0 T

N-—-1
1

- (a=1)e -
<Ce"’N Z |y(sk)e€s’“|%/ e~ =1 “MNsds < CeV*N +C|y(sN)|:1*1
k=o T

Therefore for ¢ large enough we have

g—1

ly(sn)| < Cly(sn)|™=1 and [|y(sn)| — 0

Since ¢ > m we have found a contradiction. Therefore there exists € > 0 such
that lim sup,_, ., |y(t)e*| < C. Thus ¢(0) + v < 0.
Using (5.3) once again, we get

1
() =(n=m)

u(r) < C'/Oo [SP”*"(O)] "Thds < Or T oo

Therefore
log(r) 7 (0)—(n—m)
I(r) < C B ()00 ZEREE s g go(1)
log(a)
Note that
s . n—m  g—m _g-m B
o(1)=a(0) =n -5 (=== + T 6(0) = L (5(0) +, - )
q—m .
1) — = - _
o(1) = 0(0) = L2 (6(0) + ) = —j < 0

Iterating the reasoning we can find a constant o(k) < o(0) — kj such that

k) — (n —
n + (q — ].)w < 0,
therefore log(r)
og(r
I(ry<C hl(s)e["+(q_1)v(k);t(—nlim)]sds < 0.
log(a)

O

Arguing in an analogous way we can understand the behavior of the solutions
asr — 0.

5.5 Lemma. Consider Eq. (4.1) and system (4.4) where | is such that both
h}(t) and hi(t) are bounded as t — —oo. Consider any solution u(r) corre-
sponding to a trajectory having the origin as a-limit set. We have that u(0) is
positive and finite.
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Proof. First of all observe that u(0) > 0 since u(r) > 0 and u'(r) < 0 for
r > 0 small. We suppose | = p and leave unsaid the subscript; the proof in the
general case is totally analogous. Once again we can assume that K2(r)uP~! <
flu,r) < K2(r)uP~. Suppose for contradiction that limsup,_,,u(r) = +oo;
we recall that lim,_o u(r)r*® = 0. Let us call

S:=sup{s | limsupu(r)r®>0}.

r—0

Observe that 0 < S < ay; we will prove that S = a,,. Let us consider a value s
for which there exists a sequence r;, — 0 such that limy_, o u(ry)ry®® > d > 0.
Then using Eq. (5.3) we get

1

b t m—1
u(r)r®® — u(b)r®® = r% / <t1”/ f(u,s)s”lds> dt <
r 0

, . i (5.8)
o / (tl—n/ hQSn—l—S(p—l)ds> T oot
T 0
where C' > 0 is a constant. Now passing to the limit we get the following
m—=S(p—1)
d < lim u(ry)ry® —u(b)ry®™ < lim Crp®t " m—1
k—o00 k—o00 (59)

d < lim Crjm=-1(@p=S)+s0—5
k—o0

Thus 2% (32— §) + 5 — S <0.
First of all observe that S > 0; in fact otherwise we have sg = 0 and we find
a contradiction in the previous inequality. From the definition of S, it follows

that we can choose s = S — ¢ in Eq. (5.9), for any given ¢ > 0. This way we

obtain 2—2 (# - S) < €. Therefore we get S = a.

Now we prove that S # a,, so the thesis is proved. Note that, if the regularity
hypothesis is satisfied, using invariant manifold theory we can easily conclude.
First of all observe that if h?(t) — 0 exponentially as ¢ — —oo, then we are done.
Otherwise the proof is for contradiction. Therefore we assume that there exists
0 < € < ay, such that limsup, , . z(t)e " = +oo. Let us call g(t) = z(t)e <,
there exists a monotone decreasing sequence t, — —oo such that g(t,) — oc.
We can assume without losing of generality that g(t,) > g(t) for any t € I, =
[tn, tn—1]-

Reasoning as in Lemma (5.4) can prove that £ > 0 and ¢ < 0 in the intervals
we are considering, therefore y(t) < Cz(t)P~!. Moreover using (5.2) and (5.3)
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we find
n 1
z(ty) = e | u(log(ty)) +Z/ ly(s)|™Te *ds | <
j=171;
n o1
< et | ulog(t) + 3 / 2 (s)| FT e ds | <
j=171;
n p=1 e(p—1)
< eat" ’U,(lOg(to)) + Z (|m(tj)|66tf) m—1 / e(_a_ m—1 )st
j=1 L
Thus we find z(t,) < C|z(t,)] = N 0; but this is a contradiction, so the proof
is concluded. O

5.6 Lemma. Consider Eq. (1.2) and the corresponding system (4.5) with & > 0,
obtained settingl in (2.9) in order to have that both h} (t) and h?(t) are bounded.
Consider the trajectories of this system having the origin as a-limit set. Then
the corresponding u(r) is such that u(0) is finite and nonnegative.

Proof. First of all observe that if lim,_,ou(r) = oo, then u(r) cannot be mono-
tone increasing as r — 0. Therefore we can find a sequence of intervals Ij in
which y < 0. Moreover we recall that

e @le™ < || = by (an(s)™" + hi (t)ai(s)P~ e ds
Iy,
Thus in such intervals we have 0 < |y (t)|e """ < [, hi(t)zi(s)P e 7"ds.
So the inequality (5.8) still holds in such intervals. Suppose that |y;(t)[e™ 7t ~
z;(t)PLet for a certain € > 0, then we are done. Otherwise we can repeat the
proof done for Lemma (5.5) and conclude. O

6 Conclusions

In [6] we used methods similar to the ones of this paper to study the equation
1, 1m—2\1 n—1 r, 1m—2
(| |"™ %) + —— | [" 7 + K (r)ihg(u) = 0 (6.1)

The results of that paper reduce to the following known results when K is a
constant.

e if K < 0 all the solutions are monotone increasing so they cannot represent
G.S.
when K > 0 we have three different situations:

e if ¢ > m* all the solutions of (6.1) are G.S. with slow decay, that is

u(r) ~r=%, here ag = -
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e if ¢ = m* all the solutions of (6.1) are G.S. with fast decay, that is u(r) ~

_n—m
m—1 *
r ’

e if ¢ < m* all the solutions of (6.1) are crossing solutions.

So the increasing or the decreasing nature of the solutions u(r) depends strongly
on the sign of K, while the exponent ¢ controls the rate of decay or of growth
at 0o. When we study the following equation:

(u'|u|™2) + ”T_lu’|u'|m—2 — K4, (u) + K24, (u) =0 (6.2)

we find a balance between the increasing rate deriving from the negative term
— K4, (u) and the positive one K?,(u). We always find positive solution with
positive finite limit at oo, but if ¢ < p < m* we also find crossing solutions
and G.S. Letting p reach the value p = m* the term u? has not anymore the
strength to force the solution to decay to 0, because the corresponding decay
in (6.1) is too slow. So when ¢ < m* < p or ¢ = m* < p all the solutions have
positive lower bound.

The statement continues to be true if K'(r) and K?2(r) are positive functions
satisfying a rather reasonable monotonicity condition and such that there exist
two positive constants d, D such that d < K!(r) and K?(r) < D. To have G.S.
also in this last case we need to assume some decay hypothesis on the functions
K!(r) and some increasing hypothesis on K?2(r), in order to give more weight
to the decay effect related to the positive term.

We also observe that the beahviour of solution of Eq. (4.7) is “ruled” by the
behavior of K!(r) if ¢, < m* and by K'(r) if ¢ > m* and the functions are
bounded.
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