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Abstract

We consider the following equation

∆pu − k1(|x|)u|u|q1−1 + k2(|x|)u|u|q2−1 = 0,

where x ∈ R
n, n > p > 1, q2 − 1 > p > 1, q1 < q2 < p∗ = np

n−p − 1 and
the functions ki(|x|) are assumed to be strictly positive and bounded.
We prove the existence of radial Ground States under suitable Hy-
potheses on the functions ki(r). Furthermore we prove the existence
of uncountably many radial Singular Ground States; this last result
seems to be new even for the autonomous case and even for p = 2.

The proofs combine an energy analysis and a new dynamical sys-
tems method.
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1 Introduction

In this paper we discuss positive radial solutions of the following equation

∆pu− k1(r)u|u|q1−1 + k2(r)u|u|q2−1 = 0 (1.1)

where ∆pu = div(|Du|p−2Du) is the so called p-Laplacian, q2 > p > 1,
q1 < q2 < p∗ = σ − 1, |x| = r and x ∈ R

n, n > p. We denote by σ = np
n−p

the

Sobolev critical exponent. We assume that the functions k1(r) and k2(r) are
positive for r > 0 and locally Lipschitz continuous. We give the following
notation

f(u, r) = −k1(r)u|u|q1−1 + k2(r)u|u|q2−1 and F (u, r) =

∫ u

0

f(s, r)ds.

We denote by A(r) > 0 the positive constant such that f(A(r), r) = 0 and
by B(r) > 0 the constant such that F (B(r), r) = 0.

In particular we will focus our attention on the problem of existence
of ground states (G.S.), of singular ground states (S.G.S.) and of crossing
solutions. By G.S. we mean a positive regular solution u(x) defined in the
whole of R

n such that lim|x|→∞ u(x) = 0. A Singular Ground State (S.G.S)
of equation (1.1) is a singular positive solution v(x) such that

lim
|x|→0

v(x) = +∞ and lim
|x|→+∞

v(x) = 0.

Crossing solutions are radial solutions u(r) such that u(r) > 0 for any 0 ≤
r < R and u(R) = 0 for some R > 0, so they can be considered as solutions
of the Dirichlet problem in the ball of radius R. Here and later we write
u(r) for u(x) when |x| = r and u is radially symmetric. We recall that when
k1 and k2 are positive constants and 1 < p ≤ 2, ground states, singular
ground states and solutions of the Dirichlet problem in the ball, can only be
radial, see [2] and [20]. It seems reasonable that this result can be extended
also to the case where −k1(r) and k2(r) are decreasing. Motivated by this
consideration we will consider only radial solutions so we will in fact deal
with the following singular O.D.E.:

(u′|u′|p−2)′ +
n− 1

r
u′|u′|p−2 − k1(r)u|u|q1−1 + k2(r)u|u|q2−1 = 0. (1.2)

Here ′ denotes the derivative with respect to r. We will call “regular” the
positive solutions u(u0, r) of (1.2) satisfying the following initial condition

u(0) = u0 > 0 u′(0) = 0. (1.3)
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We will call “singular” the positive solutions u(r) which are singular in the
origin, that is limr→0 u(r) = ∞.

The corresponding autonomous equation is well studied and understood.
In the pioneering work [10], the authors analyze the case where p = 2 and q1 is
sublinear. They prove the existence of a radial G.S. and of both oscillatory
and crossing solutions, assuming that the functions −k1(r) and k2(r) are
constant or decreasing. In [9] the authors state the existence of radial ground
states for the autonomous problem when p ≥ n and when n > p and q1 <
q2 < p∗. One of the main contribution of this paper is the extension of these
existence results for G.S. obtained for the autonomous case in [9], to the
non-autonomous case. More precisely we allow k1 and k2 to belong to a wide
class of bounded positive functions instead of being positive constants.

In [20] it was proved that S.G.S., if they exist, have to be radial. However,
to the best of our knowledge, the problem of existence of S.G.S. was still
open, even in the autonomous case. The most important result are the ones
of Theorem (2.4), where we prove the existence of uncountably many S.G.S.
under some weak assumptions on the functions ki(r). This result holds and
it is new even for the autonomous case.

Pucci and Serrin in [19] proved the uniqueness of this G.S. for the spatial
independent equation, assuming q1 < q2 < p∗ and requiring some further
conditions on these parameters. We conjecture that the uniqueness of G.S.
still holds when the functions −k1(r) and k2(r) are decreasing, but we be-
lieve that the existence of multiple G.S may be proved if such a condition is
violated, perhaps constructing some ad hoc functions −k1(r) and k2(r).

We wish to recall, that Ni and Serrin, in [18], have proved that the au-
tonomous equation admits neither G.S. nor crossing solutions, when q1 < q2
and q2 ≥ p∗; the proof is a direct consequence of the Pohozaev identity. Some
of these results were generalized to the non-autonomous setting in [4].

We finish this introduction by giving some terminology. Recall that given
a system of the form

ẋ = f(x, t)

and a solution x(t), the α-limit set of x(t) is the set

A =
{
P : ∃tn → −∞ such that lim

n→∞
x(tn) = P

}
,

while the ω-limit set is the set

W =
{
P : ∃tn → +∞ such that lim

n→∞
x(tn) = P

}
.

One can show that, if x(t) is bounded on R, then these sets are compact.
Moreover, if the system is autonomous, these sets are invariant for the flow
generated by the system.
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2 Statement of the results

The existence of a solution of problem (1.2), (1.3) is equivalent to the exis-
tence of a fixed point for the following operator T : C(0, r) → C1(0, r)

Tu(r) = u0 −
∫ r

0

(
t1−n

∫ t

0

f(u, s)sn−1ds

) 1
p−1

dt (2.1)

Using the Schauder fixed point theorem, local existence for solutions of prob-
lem (1.2), (1.3) can be proved, see for example pages 238–242 in [8]. We will
give also an alternative proof of this standard result.

We collect here some of the main hypotheses which will be used in the
paper

P1 1 < p ≤ 2 and q1 ≥ 1.

P2 q1 > p∗ = n(p−1)
n−p

F1 limr→0|k′1(r)r1+(q2−q1)
p

q2−p+1 | + |k′2(r)r| <∞.

F2 There exist S1 > 0 and S2 > 0 such that k1(r) ≥ S1 and k2(r) ≤ S2 for

any r > 0. Furthermore k1(0)
k2(0)

< S1(q2+1)
S2(q1+1)

.

F3 limr→∞|k′1(r)r| + |k′2(r)r1−(q2−q1)
p

q1−p+1 | <∞.

If we assume that the functions ki(r) are bounded as r → 0, we can prove
that regular solutions of (1.2) are such that u′(r) ≤ 0 for r small, see Lemma
(1.1.1) in [8]. From that Lemma we can easily deduce also the following
useful result.

2.1 Lemma. Assume that the functions ki(r) are bounded for r close to
R > 0. Then if u(R) is a critical point for u(r) and f(u(R), R) > 0, then
u(R) is a (local) maximum, while if f(u(R), R) < 0, then u(R) is a (local)
minimum.

It can also be proved that any regular solution u(r) of (1.2), (1.3) where
u0 > A(0) can be continued in J(u0) = (0, Ru0) = {r > 0 | u′(r) <
0 and u(r) ≥ 0}, where Ru0 can also be infinite, see again [8], for exam-
ple. We will denote by u(u0; r) the solution of (1.2), (1.3). Note that if
u0 > A(0) there exists the limit limr→Ru0

u(u0; r) = L(u0) ≥ 0. Assume that
Hypothesis F2 is satisfied, then we construct the following sets:

I− = {u0 > A(0) | Ru0 <∞ and L(u0) = 0}
I+ = {u0 > A(0) | L(u0) > 0}
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The sets I+ and I− are obviously disjoint. Now we are ready to state the
following crucial Lemma.

2.2 Lemma. Assume that Hypotheses F1, F2, P1 are satisfied. Then I+

and I− are nonempty and open.

The proof of Lemma (2.2) is long so we divide it in many steps. In this
section we will show that I+ is open and nonempty. In section 3 we prove that
I− is open and nonempty. The proof of this result involves the introduction
of a dynamical system and it is rather long, but it exploits a new method
which could be useful also for other families of quasilinear equations. From
Lemma (2.2) it follows that there exists a value A∗ �∈ (I+ ∪ I−), A∗ > A(0)
disconnecting I+ and I−. Therefore L(A∗) = 0 and RA∗ = ∞. Thus we can
easily deduce one of the main Theorems of the paper.

2.3 Theorem. Assume that Hypotheses F1, F2, P1 are satisfied, then (1.1)
admits at least one monotone decreasing radial G.S.

As a consequence of the dynamical analysis developed in section 3, we
also deduce the following Theorem.

2.4 Theorem. Assume that Hypotheses F1, F2, F3, P1 and P2 are satisfied,
then (1.1) admits uncountably many radial S.G.S.

This is perhaps the most important result of the paper since, to the best
of our knowledge, the existence of such solutions had not been observed
previously even in the autonomous case and even for the classical Laplacian,
that is when p = 2.

We introduce now an energy functional closely related to the ones used
in many papers involving the autonomous case, see e. g. [9].

E(u, r) =
p− 1

p
|u′|p + F (u, r)

d

dr
E(u, r) = −dk1

dr
(r)

|u|q1+1

q1 + 1
+
dk2

dr
(r)

|u|q2+1

q2 + 1
− n− 1

r
|u′|p.

Note that if E(u(r), r) < 0 then 0 < u(r) < B(r). Assume at first that
F (u, r) is monotone decreasing in r; we want to prove that B(0) = A ∈ I+.
Note that d

dr
E(u, r) ≤ 0 for any r ≥ 0. Therefore we have

F (u(A, r), r) ≤ E(u(A, r), r) < E(u(A, 0), 0) = F (u(A, 0), 0) = 0

for r large. In particular limr→RA
F (u(A, r), r) ≤ limr→RA

E(u(A, r), r) < 0
so the claim is proved. Working a little on this idea we can prove the following
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more general Lemma. Let us define the following functionals which do not
depend explicitly on r.

F̄ (u) = −S1
|u|q1+1

q1 + 1
+ S2

|u|q2+1

q2 + 1
and Ē(u) =

p− 1

p
|u′|p + F̄ (u).

Here and later S1 and S2 are the positive constants satisfying the relation in
F2

2.5 Remark. Note that if hypothesis F2 is satisfied, we can find D > A(0)
such that f(D, 0) > 0 and F̄ (D) ≤ 0.

2.6 Lemma. Assume that Hypothesis F2 is satisfied, then I+ �= ∅.
Proof. Fix D > 0 as in Remark (2.5). We want to show that D ∈ I+, so we
consider the solution u(D, r): note that u′(D, r) < 0 for r > 0 small. Hence
u′(D, r) < 0 for r ∈ J(D) and

d

dr
Ē(u(r)) = [(S2 − k2(r))u|u|q2−1 − (S1 − k1(r))u|u|q1−1]u′ − n− 1

r
|u′|p < 0.

Thus the limit limr→RD
E(u(D, r), r) exists and is negative. It follows that

limr→RD
F (u(D, r), r) < 0, so D ∈ I+.

We point out that the solutions of (1.2), (1.3) depend continuously on
initial data and are locally unique in their respective sets J(u0). This can be
proved by putting together the ideas of Propositions A3 and A4 in [8], with
some trivial modification to adapt them to the non-autonomous problem; see
also Proposition 2.6 in [9].

2.7 Lemma. Assume k1(0) ≥ 0 and k2(0) > 0. Fix u0 > A(0), then for any
ε > 0 and r0 ∈ J(u0), there exists δ > 0 such that if |v0 − u0| < δ, then v(r)
is defined in [0, r0] and

sup
r∈[0,r0]

(|u(r) − v(r)| + |u′(r) − v′(r)|) < ε.

Now reasoning as in [9] we can prove the following Lemma.

2.8 Lemma. Assume that Hyp. F2 is satisfied, then I+ is open.

Proof. Let c ∈ I+ and consider a sequence ck → c. We want to show that
ck ∈ I+ for k large. Choose R ∈ J(c) ∩ J(ck) such that Ē(u(c, R)) < 0. If

k is large enough, by Lemma (2.7) we have Ē(u(c, R)) < Ē(u(ck,R))
2

< 0. So
reasoning as in Lemma (2.6) we have the thesis.
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3 Dynamical Analysis

3.1 Fowler transformation and autonomous system

In this section we want to prove that I− �= ∅; in fact we will show that there
exists a positive constant c > B(0) such that [c; +∞) ⊂ I−. To achieve our
task we need to introduce a dynamical system, through the following change
of coordinates which is a generalization of the Fowler transformation for the
classical Laplacian, see [3], [4] and [5].

αl = p
l−p+1

, βl = pl
l−p+1

− 1, γl = βl − (n− 1), l > p− 1

xl = u(r)rαl yl = u′(r)|u′(r)|p−2rβl r = et (3.1)

φ1(t) = k1(e
t) = k1(r), φ2(t) = k2(e

t) = k2(r),

h1,l(t) = φ1(t)e
δlt, h2,l(t) = φ2(t)e

ηlt

where δl = αl(l− q1) = p
(
1 − q1−p+1

l−p+1

)
, and ηl = αl(l− q2) = p

(
1 − q2−p+1

l−p+1

)
.

Using (3.1) we change (1.2) into the following dynamical system.

(
ẋl

ẏl

)
=

(
αl 0
0 γl

)(
xl

yl

)
+

(
yl|yl|

2−p
p−1

h1,l(t)ψq1(xl) − h2,l(t)ψq2(xl)

)
(3.2)

where “·” denotes derivation with respect to t and ψl(s) = |s|l−1s.

3.1 Remark. It is worthwhile to point out that Eq. (3.2) is C1 if and only
if Hypothesis P1 is satisfied and the functions hi,l(t) are C1. In fact if Hyp.
F1 and P1 are satisfied Eq. (3.2) is locally Lipschitz continuous, so local
uniqueness of the solutions is ensured. We will use some integral involving
the derivative of the functions hi,l(t). When the classical derivatives of hi,l(t)
do not exist we could replace it with the weak derivative or rewrite the
expression integrating by parts. However for simplicity reasons we will always
write ḣi,l(t).

Note that if we set l = q1 we obtain h1,l(t) = φ1(t), and with l = q2 we have
h2,l(t) = φ2(t). We will set l = q2 to investigate the behaviour of trajectories
as t→ −∞ and l = q1 to investigate the behaviour of trajectories as t→ ∞.
We wish to stress that γl < 0 < αl whenever l > p∗ and γl +αl > 0 whenever
l < p∗. We point out now some elementary correspondences between Eq.
(1.2) and system (3.2).

3.2 Remark. Positive solutions u(r) of Eq. (1.2) correspond to trajectories
of Eq. (3.2) belonging to the halfplane R

2
+ := {(x, y) | x ≥ 0}. Furthermore

positive decreasing solutions u(r) of Eq. (1.2) correspond to trajectories of
Eq. (3.2) belonging to the 4th quadrant and viceversa.
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We give now a Proposition concerning the asymptotic behavior of positive
solutions; the proof can be found in [4].

3.3 Proposition. Assume that limt→−∞h1,l(t) = A ≥ 0 and limt→−∞h2,l(t) =
B > 0. Trajectories X(t) of Eq. (3.2) such that limt→−∞X(t) = O = (0, 0)
correspond to regular solutions u(r) of Eq. (1.2) and viceversa.

Assume that limt→∞h1,l(t) = A ≥ 0 and limt→∞h2,l(t) = B > 0. Tra-
jectories X(t) of Eq. (3.2), which are well defined and belong to R

2
+ for t

large, and satisfying limt→∞X(t) = O correspond to solutions u(r) of Eq.
(1.2) which are well defined and positive for r large and have fast decay that

is u(r) = o(r−
n−p
p−1 ), and viceversa.

Assume that the functions ki(r) are strictly positive and bounded. Then
solutions u(r) of Eq. (1.2) which are well defined and positive for r large and

tend to 0 as r → ∞ are such that u(r) = o(r−
n−p
p−1 ), so for the corresponding

trajectory X(t) of Eq. (3.2) we have limt→∞X(t) = O

We introduce now some auxiliary functions which are related to the Po-
hozaev identity.

Hl(xl, yl, t) := αlxlyl +
p− 1

p
|yl|

p
p−1 − h1,l(t)

q1 + 1
|xl|q1+1 +

h2,l(t)

q2 + 1
|xl|q2+1.

Jl(xl, yl, t) := −γlxlyl +
p− 1

p
|yl|

p
p−1 − h1,l(t)

q1 + 1
|xl|q1+1 +

h2,l(t)

q2 + 1
|xl|q2+1.

Note that differentiating with respect to t we find

d

dt
Hl(xl(t), yl(t), t) := (αl + γl)ẋlyl − ḣ1,l(t)

q1 + 1
|xl|q1+1 +

ḣ2,l(t)

q2 + 1
|xl|q2+1.

d

dt
Jl(xl(t), yl(t), t) := −(αl + γl)xlẏl − ḣ1,l(t)

q1 + 1
|xl|q1+1 +

ḣ2,l(t)

q2 + 1
|xl|q2+1.

We begin our analysis of Eq. (3.2) assuming that the system is autonomous:

h1,l(t) ≡ A > 0 and h2,l(t) ≡ B > 0 and l < p∗. (3.3)

This is a strong assumption: in fact if l = q2 this is equivalent to ask that
k1(r) = Ar−δl and k2(r) ≡ B for any r > 0. We give now some notation
which will be in force throughout the whole paper.

U+ := {(xl, yl) ∈ R
2 | ẋl > 0} and U− := {(xl, yl) ∈ R

2 | ẋl < 0}
C := {(xl, yl) ∈ R

2 | ẋl = 0}
Note that these definitions depend on l even if it is not explicitly indicated.
The autonomous system (3.2), (3.3) admits exactly three critical points: the
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origin O, P = (Px, Py), where Py < 0 < Px, and −P . The origin is a saddle
point and P is an unstable focus. When Hyp. P1 is satisfied, using standard
invariant manifold theory, we can prove the existence of a stable and an
unstable manifold for (3.2), respectively W s and W u. We want to show that
they are as depicted in Fig. (1).

3.4 Observation. System (3.2), (3.3) admits no periodic trajectories.

Proof. Note that dẋl

dxl
+ dẏl

dyl
= αl +γl > 0. Assume for contradiction that there

exists a periodic trajectory Xl(t) of period T , and call its graph ∂B and B
the bounded set enclosed by ∂B. Then

0 =

∫ T

0

(ẋlẏl − ẏlẋl)dt =

∫
∂B

ẋldyl − ẏldxl =

∫
B

(
dẋl

dxl
+
dẏl

dyl
)dxldyl > 0.

So we have found a contradiction and the claim is proved.

3.5 Observation. We observe now that the level sets of the function H and J
are closed bounded curves. The minimum for both is obtained at the critical
point P and it is negative. The curves defined by H = 0 and J = 0 are
8-shaped: they are made by the union of a closed curve contained in R

2
+,

crossing the x axis and to which the origin belong, and its reflection with
respect to the origin. Inside the bounded set enclosed by the level set H = 0,
the function H is negative, outside it is positive. The same holds for J .

The proof follows from elementary reasonings so it will be omitted. We will
commit the following abuse of notation: when we consider an autonomous
system (3.2), satisfying (3.3), we write the functions H(x, y) for H(x, y, t)
and J(x, y) for J(x, y, t).

3.6 Lemma. Consider the autonomous system (3.2) and assume that (3.3)
holds. Then any trajectory which becomes unbounded going backwards or
forward in t, has to rotate clockwise and cross the coordinate axes indefinitely.

Proof. Consider a trajectory X(t) = (x(t), y(t)) of the autonomous system
(3.2) with p∗ < l < p∗, which is continuable forward for any t < T , where
T ≤ ∞. Assume that there is a sequence tk → T such that limk→∞ |X(tk)| =
∞. Then it follows that limk→∞H(X(tk)) = ∞ and limk→∞ J(X(tk)) = ∞.
Assume for contradiction that X(t) ∈ R

2
+ for t in a left neighborhood of

T . We can assume without losing of generality that there is T0 such that
x(T0) > 0 and y(T0) > 0. If ẏ(T0) ≥ 0 we have that J(X(t)) is monotone
decreasing for t ≥ T0, until X(t) crosses the isocline ẏ = 0. Since we have
assumed that X(t) becomes unbounded forward in t there exists T1 > T0

such that X(t) enters in the subset of the 1st quadrant where ẏ(T1) < 0. We
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W u
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Figure 1: A sketch of the phase portrait for the autonomous system

claim that there exists T2 at which X(t) crosses the x positive semi-axis. In
fact otherwise we would have

ẏ(t)

ẋ(t)
∼ −Bx(t)q2

αx(t)
< −ε < 0 as t→ T−

if q2 ≥ 1; but this is a contradiction, so the claim is proved. Since H(·) is
decreasing in the subset of U+ where y < 0, we have that X(t) has to cross
the isocline C for a certain T3 > T2. From an elementary analysis of the
phase portrait it follows that there exists T4 > T3 for which X(t) has to cross
the isocline ẏ = 0 and enter in the subset of the 4th quadrant where ẏ ≥ 0
and ẋ < 0. Then X(t) has to cross once again the isocline C and enter in
the subset where ẋ > 0. But, since we have assumed that X(t) becomes
unbounded, it must have a self-intersection. But this is in contradiction with
the fact that system (3.2) is C1 and autonomous. Therefore X(t) cannot stay
in R

2
+ for every t in a left neighborhood of T . Using the fact that system

(3.2) is symmetric with respect to the origin, we prove that any trajectory
which is unbounded forward in t must cross the coordinate axes clockwise
indefinitely.

An alternative proof can be obtained using polar coordinates (ρ, θ) for
system (3.2). In this way we find that

θ̇ = (−α+γ) cos θ sin θ−[ρ
2−p
p−1 | sin θ| p

p−1−Aρq1−1| cos θ|q1+1+Bρq2−1| cos θ|q2+1]
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Therefore θ̇ → −∞ for ρ → ∞. Thus if X(t) ∈ R
2
+ for t close to T and

X(t) is unbounded forward in t we can find two sequences t̂k and ťk, t̂k <
ťk < t̂k+1 both converging to T and such that X(t̂k) is bounded and X(ťk) is
unbounded. It follows that X(t) must intersect the isocline C infinitely many
times. Reasoning as above we find that X(t) must have a self-intersection,
so we have found a contradiction.

Reasoning in the same way we can prove that if X(t) is unbounded back-
ward in t, then it must cross the coordinate axes indefinitely.

We want to prove that the unstable and the stable manifolds W u and
W s are shaped as in Fig. (1). We follow a trajectory X̂(t) = (x̂(t), ŷ(t))
of system (3.2), (3.3) belonging to the unstable manifold W u. We want to
prove that X̂(t) is unbounded forward in t. Therefore, from Lemma (3.6) it
follows that it has to cross the coordinate axes infinitely many times rotating
clockwise. It is easily observed that limt→−∞X̂(t) = (0, 0) = O, and that
X̂(t) is in the 1st quadrant in the subset where ẋ > 0 and ẏ > 0 for t << 0.
Repeating the reasoning of Lemma (3.6) we can prove that X̂(t) crosses the
isocline ẏ = 0, then the x positive semi-axis and enters the 4th quadrant.
Note that the critical point P is an unstable focus, so X̂(t) cannot have P
as ω-limit set. Recalling this observation and reasoning as in Lemma (3.6),
we have that X̂(t) has to reach the isocline C at some t = T1. From an
elementary analysis of the phase portrait it follows that there exists T2 > T1

for which X̂(t) has to cross the isocline ẏ = 0.
Since P is an unstable focus, there exists at least one trajectory X̌(t)

having P as α-limit set. Note that X̌(t) cannot cross X̂(t), therefore there
are only two possibilities: X̌(t) is in R

2
+ for any t > 0 and it has the origin

as ω-limit set, or there exists Ť for which X̌(t) crosses the y negative semi-
axis. If the former possibility is verified, then W s is as depicted in figure
(1). Assume that the latter holds. Consider a trajectory X̄(t) belonging
to the stable manifold W s, and follow it backwards in t. Observe now that
W u and W s are both one-dimensional manifolds. Since W u �≡ W s we have
that W u ∩W s = ∅. Thus there exists T3 > T2 such that X̂(t) crosses the y
negative semi-axis. Since X̄(t) cannot intersect X̌(t), we have that X̄(t) has
P as α-limit set. So once again W s is as depicted in figure (1). Reasoning in
this way we can prove that W u becomes unbounded rotating clockwise and
crossing the coordinate axes indefinitely.

From this dynamical analysis now we can easily deduce the following
Proposition.

3.7 Proposition. Consider system (1.2) and assume that (3.3) and Hyp.
P1 are satisfied. Then all the regular solutions u(r) are crossing solutions.
Furthermore there exists uncountably many S.G.S. v(r), that is v(r) is well
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defined and positive for any r > 0, v(r)rαl → Px > 0 as r → 0 and

v(r)r
n−p
p−1 → c ≥ 0 as r → ∞.

Note that system (3.2), (3.3) is invariant for translations in t. Therefore
if X(t) is a solution, Xτ (t) = X(t + τ) is a solution as well. Equivalently if
u(r) is a solution of (1.2), then v(r) = u(reτ )eατ is a solution as well.

Let us call R1(u0) the first value for which the solution u(u0, r) of (1.2),
(1.3) becomes null, that is u(u0, R1(u0)) = 0. Then the following corollary
holds.

3.8 Corollary. Consider (1.2) and assume that (3.3) and Hyp. P1 are
satisfied. Then, for any R1 > 0 the Dirichlet problem in the ball of radius R1

admits exactly one solution. Moreover

lim
u0→∞

R1(u0) = 0 and lim
u0→0

R1(u0) = ∞

Furthermore for any u0 > 0, the solution u(u0, r) admits an infinite sequence
of values Rk → ∞ such that u(u0, Rk) = 0.

3.2 Existence of crossing solutions

We turn now to consider the non-autonomous system (3.2). It will be useful
to embed this system in the following family of non-autonomous system,
where we have added a parameter of translation in t.

ẋl =αlxl + yl|yl|
2−p
p−1

ẏl =γlyl + h1,l(τ + t)ψq1(xl) − h2,l(τ + t)ψq2(xl)
(3.4)

We want to make a geometrical analysis of the phase portrait comparing
solutions of the autonomous and non-autonomous system (3.4). We will
carry out the analysis on figure (2) so we introduce some notation in or-
der to explain it. We denote by W u(a1, a2) and W s(a1, a2) respectively the
unstable and the stable manifold of the autonomous system (3.4) where
h1,l(t) ≡ a1 and h2,l(t) ≡ a2. We call ξ+(a1, a2) = (x+(a1, a2), y

+(a1, a2))
and ξ−(a1, a2) = (x−(a1, a2), y

−(a1, a2)) the first intersection of the isocline
C respectively with W u(a1, a2) and W s(a1, a2). We call W̃ u(a1, a2) and
W̃ s(a1, a2) the branches of W u(a1, a2) and W s(a1, a2) respectively joining
the origin and ξ+(a1, a2) and ξ−(a1, a2). Consider the autonomous system
such that hi,l(t) ≡ ai; let us call X̄u(a1, a2, t) the trajectory departing from
ξ+(a1, a2) at t = 0, and X̄s(a1, a2, t) the trajectory departing from ξ−(a1, a2).
Set a1 = h1,l(τ) and a2 = h2,l(τ), we denote by t = T (τ) the first value for
which X̄u(a1, a2, t) intersects the negative y semi-axis. Note that if a1 is
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nonnegative and a2 ∈ [c1, c2], where 0 < c1 < c2 <∞, then T (τ) is uniformly
bounded. We wish to point out that all these points depend continuously
with respect to τ . In fact this dependence is at least as regular as system
(3.4). Fix τ , we give the following definitions

a1(τ) = inf{h1,l(t) | t ≤ τ}, a2(τ) = inf{h2,l(t) | t ≤ τ}
b1(τ) = sup{h1,l(t) | t ≤ τ}, b2(τ) = sup{h2,l(t) | t ≤ τ},
ξ+(τ) =ξ+(a1(τ), b2(τ)) ξ+(τ) = ξ+(b1(τ), a2(τ))

and c(τ) the segment of C between ξ+(τ) and ξ+(τ). We use the following

notation ξ+(τ) = (x+(τ), y+(τ)) and ξ+(τ) = (x+(τ), y+(τ)). Note that

x+(τ) < x+(τ).
We call ∂e(τ) the union of W̃ u(a1(τ), b2(τ)) and W̃ u(a2(τ), b1(τ)), and

e(τ) the bounded subset enclosed by the origin, ∂e(τ) and c(τ). When τ
is fixed we use the following notation: we underline the quantities obtained
from (3.4) in the autonomous case where h1,l(t) ≡ a1(τ) and h2,l(t) ≡ b2(τ),
e.g. X(t), we overline the quantities obtained from (3.4) in the autonomous
case where h1,l(t) ≡ b1(τ) and h2,l(t) ≡ a2(τ), e.g. X(t), and we do not
underline nor overline quantities of the non-autonomous system, e.g. X(t).
We denote by X(Q, t) the trajectory of (3.4) departing at t = 0 from Q ∈ R

2.
Now we are ready to state the following Lemma.

3.9 Lemma. Assume that Hyp. P1 is satisfied and that limt→−∞h1,l(t) ≥ 0
and 0 < limt→−∞h2,l(t) < ∞. Then for any τ there exists Q ∈ C such
that for the trajectory X(Q, t) of (3.4) we have limt→−∞X(Q, t) = (0, 0) and
X(Q, t) ∈ U+ for any t < 0. Let us call u(u0, r) the corresponding solution
of (1.2), then u0 → ∞ as τ → −∞ and u0 → 0 as τ → ∞.

Proof. Observe that ẋ(x, y) = ẋ(x, y) = ẋ(x, y) on ∂e(τ), and ẏ(x, y) ≥
ẏ(x, y) on W̃ u(a1(τ), b2(τ)) and ẏ(x, y) ≤ ẏ(x, y) on W̃ u(a2(τ), b1(τ)). Now
consider the non-autonomous system (3.4); note that the flow on ∂e(τ) points
towards the interior of e(τ) for any t ≤ 0. Therefore, using Wasewzki’s
principle, see [7] and [11], it follows that there exists a point Q = (Qx, Qy) ∈
c(τ) such that the trajectory X(Q, t) departing from Q at t = 0 is forced to
stay in e(τ) for any t ≤ 0 and limt→−∞X(Q, t) = (0, 0). This proves the first
part of the Lemma.

We recall that from Proposition (3.3) we know that the solution u(r) of
(1.2) corresponding to X(Q, t) is regular, therefore u(0) = b for a certain b >
0. Fix τ and consider the trajectories X+(t), X+(t), X+(t) of system (3.4)
departing at t = 0 respectively from ξ+(τ), Q and ξ+(τ). They correspond
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Q

Figure 2: Construction of the crossing solutions. The solid line represents
the trajectory X̂(Q, t) of the non-autonomous system. We have used dashed
lines for trajectories of the autonomous system where h1,l ≡ a1(T1(τ)) and
h2,l ≡ b2(T1(τ)) and dotted lines for trajectories of the autonomous system
where h1,l ≡ b1(T1(τ)) and h2,l ≡ a2(T1(τ))

to regular solutions, say u(a, r), u(b, r), u(c, r), of their respective equation of
type (1.2). Note that x+(t) ≤ x+(t) ≤ x+(t) for any t < 0. In fact let us
call t̄ = inft<0{x+(t) < x+(t)}, then x+(t̄) = x+(t̄) and x+(t) < x+(t) for t in

a right neighborhood of t = t̄. Therefore y+(t̄)|y+(t̄)| 2−p
p−1 < y+(t̄)|y+(t̄)| 2−p

p−1 ;
but this is a contradiction because X+(t) ∈ e(τ).

Therefore for the corresponding solutions of (1.2) we have u(a, r) ≤
u(b, r) ≤ u(c, r) for r small. Therefore a ≤ b ≤ c. We recall now that
a, b, c are functions of τ . Furthermore, from Corollary (3.8) we know that
both a(τ) and c(τ) go to ∞ as τ goes to −∞ and they go to 0 as τ goes to
∞. Thus the Lemma easily follows.

Now we are ready to prove the following Proposition

3.10 Proposition. Assume that Hypothesis P1 is satisfied and that the limits
limt→−∞h1,l(t) ≥ 0 and 0 < limt→−∞h2,l(t) < ∞. Then there exists M > 0
such that u(u0, r) is a crossing solution for any u0 > M . Furthermore if
we denote by r = R1(u0) the first value for which u(u0, r) = 0 we have
limu0→∞R1(u0) = 0.
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Proof. In the previous Lemma we have proved that for any τ , there exists
a trajectory X(t) such that X(t) → 0 as t → −∞ and X(t) ∈ U+ for any
t < 0. Now we want to show that for τ << 0 these trajectories X(t) have
to cross the y negative semi axis for a certain t = t̄. We recall that T (τ)
is uniformly bounded as τ → −∞. Thus for any M > 0 we can find τ0
such that T1(τ) = τ + 2T (τ) < −M for any τ < τ0. Moreover for any
ε > 0 small, there exists M > 0 such that, for any τ < −M , we have
|b1(T1(τ)) − a1(T1(τ))| + |b2(T1(τ)) − a2(T1(τ))| < ε. It follows that the
points ξ+(τ) and ξ+(τ) are arbitrarily close as τ → −∞. Thus the set e(τ)

shrinks to a curve as τ → ∞. So x+(τ) − x+(τ) = δ(ε), where δ(0) = 0 and
δ depends continuously on ε. Furthermore the distance between stable and
unstable manifold of the autonomous system W̃ u and W̃ s, measured along
the isocline C is always uniformly positive. Namely for any constant N > 0
there exists a constant d > 0 such that x+(c1, c2) − x−(c1, c2) > d for any
c2 < N .

Therefore for continuity reasons, we have that x+(τ) − x−(c1, c2) > 0 for
any c1 ∈ [a1(T1(τ)), b1(T1(τ))] and c2 ∈ [a2(T1(τ)), b2(T1(τ))]. In particular
x+(τ) − x−(b1(T1(τ)), a2(T1(τ))) > 0.

Fix τ < −M and consider the non-autonomous system (3.4); from Lemma
(3.9) we know that there is Q = (Qx, Qy) ∈ C such that X(Q, t) ∈ U+ for

any t < 0 and limt→−∞X(Q, t) = (0, 0). Consider the trajectory X̂(Q, t) of
the autonomous system where h1,l(t) ≡ b1(T1(τ)) and h2,l(t) ≡ a2(T1(τ)),
departing from Q at t = 0. Since Qx > x−(b1(T1(τ)), a2(T1(τ))) there exists
a value t = T̂ (τ) for which X̂(Q, t) = (x̂(Q, T ), ŷ(Q, t)) crosses the negative
y semi-axis. Eventually restricting ε we can assume that T̂ (τ) < 2T (τ). We
claim that X(Q, t) = (x(Q, t), y(Q, t)) has to cross the negative y semi-axis
for some t < T̂ (τ). We will prove in fact that x(Q, t) ≤ x̂(Q, t) for any
0 < t < T̂ (τ).

Consider the autonomous system and define ∂L = {x̂(Q, t) | 0 ≤ t ≤
T̂ (τ)}. Call L the bounded subset enclosed by ∂L, the segment of the y axis
between the origin and ∂L, and the segment of the isocline C connecting the
origin with Q. Turn now to consider the non-autonomous system; first of
all observe that X̂(Q, t) is not anymore a trajectory. Note that the flow of
the non-autonomous system on ∂L points towards the exterior of L, for any
0 < t < T̂ (τ). Thus X(Q, t) cannot cross X̂(Q, t) for 0 < t < T̂ (τ) so the
corresponding u(r) is a crossing solution.

Define t0 = inf{t > 0 | x(Q, t) > x̂(Q, t)}, we want to show that t0 = 0.
It follows that d

dt
x(Q, t) > d

dt
x̂(Q, t) for t in a right neighborhood of t0. But

this implies y(Q, t0) > ŷ(Q, t0), so X(Q, t) has to cross X̂(Q, t), but this is a
contradiction so the claim is proved.
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Therefore the corresponding solution u(r) of (1.2) is a crossing solution.
Then observe that T (τ) is bounded for any τ < −M , therefore τ + T̂ (τ) →
−∞ as τ → −∞. We point out that x(Q, t) corresponds to a crossing solution
u(r) of (1.2), (1.3) and that from Lemma (3.9), u0 = b exp(−ατ) → +∞ as
τ → −∞. Moreover if R1 > 0 is the first value for which u(R1) = 0, we
have R1 = exp(τ + T̂ (τ)) → 0 as τ → −∞. This concludes the proof of the
Proposition.

Now adapting the reasoning in [9] we might prove that I− is open. How-
ever the proof is not completely elementary so we give a new proof which is
more natural in this dynamical context. It is worthwhile to point out that
this new proof works only if Hyp. P1 is satisfied, while reasoning as in [9] we
can prove the result also without this assumption.

3.11 Lemma. Assume that Hypotheses P1 and F1 are satisfied, then I− is
open.

Proof. Assume that d ∈ I−, and consider a sequence dk → d; we want to
prove that dk ∈ I− for k large. Fix l = q2 and consider the trajectories
X(dk, t) of (3.2) corresponding to the solutions u(dk, r) through (3.1). We
know that there exists T1 and T2, T2 > T1 such that X(d, T1) belongs to
the negative y semi-axis, and X(d, T2) is in the 3rd quadrant. From Lemma
(2.7) we know that the solutions u(c, r) of (1.2) depend continuously from the
initial data c for any r ∈ J(c) = (0, Rc). Furthermore note that Rdk

→ Rd

as k → ∞. Therefore, for any ε > 0, we can find N > 0 large enough such
that there exists R̄ = exp(T̄ ) < 1, R̄ ∈ J(dk) and |u(dk, R̄)−u(d, R̄)| < ε for
any k > N . Therefore |X(dk, T̄ ) −X(d, T̄ )| < ε for any k > N .

We recall now that, when Hyp. P1 and F1 are satisfied, the solutions
of system (3.2) depend continuously on their initial data in each compact
set. Therefore, for any δ > 0 we can find ε > 0 small enough so that
supt∈[T̄ ,T2] |X(dk, t) − X(d, t)| < δ. Therefore, possibly choosing a larger N ,

we can assume that X(dk, t) is in the 3rd quadrant for t = T2 and k > N .
So, for continuity reasons, X(dk, t) has cross the y negative semi-axis for
some t = T̂ (k) < T̄ . Thus u(dk, r) is a crossing solution and dk ∈ I− for k
large.

Putting together Lemma (2.6), Lemma (2.8), Lemma (3.11), Proposition
(3.10), we have the proof of Lemma (2.2).

3.3 Existence of Singular Ground States

We want to prove now the existence of radial S.G.S. for (1.1), so we have to
investigate the behaviour of positive solutions for r large. Consider system
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(3.4) where we set l = q1; if Hypotheses P1 and F3 are satisfied the system
is Lipschitz continuous and uniformly continuous with respect to t for any
t > 0. Therefore using invariant manifold theory for non-autonomous system,
we can construct a stable manifold W̄ s

q1
(τ) departing from the origin with the

following property:

W̄ s
q1

(τ) := {Q ∈ R
2
+ | Xq1(Q, t) ∈ U− if t > 0 and lim

t→∞
Xq1(Q, t) = (0, 0)}.

This manifold can be constructed as follows, see [13], [12], [6], [7]. We can
take a neighborhood ζ of the origin, in which there exists a set W̄ s

q1,loc(τ)
satisfying the following property, see [13], [12]:

W̄ s
q1,loc(τ) = {Q ∈ ζ | Xq1(Q, t) ∈ U− if t > 0 and lim

t→∞
Xq1(Q, t) = (0, 0)}.

Then we can extend this local manifold to a global stable manifold, using
the flow as follows:

W̄ s
q1

(τ) =
⋃

{Xq1(Q, τ − t, t) : Q ∈ W̄ s
q1,loc(τ − t)},

where Xq1(Q, s, t̄) is the trajectory of system (3.4) with τ = s, departing
from Q at t = 0, evaluated at t = t̄. The manifolds W̄ s

q1
(τ) are Lipschitz

continuous and depend continuously on τ .
We want to prove that W̄ s

q1
(τ) departs from the origin, enters U− and

it has its extremum in the isocline C. So we take Q ∈ ζ ∩ U−, and we
have to follow Xq1(Q, t) backwards in t and to prove that it has to cross the
isocline C. We can find B2 > A1 > 0 such that 0 < h1,q1(τ + t) < A1 and
h2,q1(τ+t) > B2, for any t < 0. Consider the autonomous system (3.4) where
l = q1, h1,q1(t) ≡ A1 and h2,q1(t) ≡ B2 and call Xq1(Q, t) the trajectory of

such a system departing from Q. Using Lemma (3.6) it can be shown that
Xq1(Q, t) has to cross the isocline C at a certain T < 0; let us define the

following curvilinear segment ∂L = {Xq1(Q, t); | T ≤ t ≤ 0}. We call L the
bounded set enclosed by ∂L, the segment of C between the origin and ∂L,
and the rectilinear segment connecting the origin and Q.

Now we go back to the non-autonomous system (3.4); Xq1(Q, t) is not

anymore a trajectory but, reasoning as in Proposition (3.10), we can prove
that the flow on ∂L goes towards the exterior of L, for any t ≤ 0. Therefore
going backwards in t, Xq1(Q, t) is forced to stay in L until it crosses the
isocline C. Note that for the solution u(r) of (1.2) corresponding to Xq1(P, t)
where P ∈ W̄ s

q1
(τ), we have the following, see Proposition (3.3):

lim
r→∞

u(r)r
n−p
p−1 = 0 and lim

r→∞
u′(r)r

n+1
p−1 = 0. (3.5)
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Figure 3: Construction of singular ground states.

Proof of Theorem (2.4). Fix τ < −M , where M > 0 is the large constant
used in the proof of Proposition (3.10) and consider W̄ s

q1
(τ). Fix t = 0;

we want to pass from the non-autonomous system (3.4) where l = q1 to
system (3.4) where l = q2. Thus we use the following change of coordinates
K1 : (xq1 , yq1) → (xq2 , yq2)

K1(xq1 , yq1) = (xq1 exp((αq2 − αq1)τ), yq1 exp((βq2 − βq1)τ)).

Note that K1 is a linear transformation which fixes the origin. Thus the
manifold W̄ s

q1
(τ) is transformed by K in a connected 1-dimensional manifold,

say W̄ s
q2

(τ), contained in the 4th quadrant, and having the origin in one of its
extrema. Furthermore observe that if Q ∈ W̄ s

q2
(τ), the trajectory Xq2(Q, t)

is such that limt→∞Xq2(Q, t) = (0, 0). This follows from the fact that for the
corresponding solution u(r) of (1.2), (3.5) holds. Consider now the following
extended system, where we have added the extra-variable z = rs = est, where
s > 0 is a constant.

ẋl =αlxl + yl|yl|
2−p
p−1

ẏl =γlyl + h1,l(τ + t)ψq1(xl) − h2,l(τ + t)ψq2(xl)

ż =sz

(3.6)

We set now l = q2. Note that there exists a two dimensional unstable man-
ifold departing from the origin. Such a manifold is made up of all and only
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the trajectories corresponding to regular solutions of (1.2). From Proposition
(3.10) it follows that there exists D > 0 such that all the sections ŵu(d) made
up intersecting the stable manifold and the plane z = d, where 0 < d < D,
are shaped as in Fig. (3). Namely, departing from the origin, ŵu(d) enters
U+ and crosses the isocline C, then crosses the y negative semi-axis. Call
B(d) the Lipschitz one-dimensional manifold made up by the segment of
ŵu(d) between the origin and the first intersection with the y semi-axis, and
by the segment of the y semi-axis between this intersection and the origin.
Observe that B(0, D) = ∪0<d<DB(d) × {d} is a Lipschitz manifold, homeo-
morphic to a cylinder and contained in R

2
+ × (0, D). To pass from (3.4) with

l = q2 to (3.6), again with l = q2, we adjoin the z-variable therefore W̄ s
q2

(τ)
is transformed into W̄ s

q2
(τ)×{esτ}. Note that there exist uncountably many

points Q ∈ W̄ s
q2

(τ) × {esτ} which belong to the bounded set enclosed by

B(esτ ) × {esτ}. We want to follow backwards in t the trajectories X̂q2(Q, t)
of (3.6) departing, at t = 0, from points Q as above. Note that the α-limit
set of every bounded trajectory of (3.6) is contained in the plane z = 0,
since z(t) is always increasing in t. Furthermore, from subsection 3.1 we
know that in this plane there are no periodic trajectories and three critical
points, which are the origin, P = (Px, Py, 0) where Py < 0 < Px and −P ;
so bounded trajectories must have one of these points as α-limit set. Note
that X̂q2(Q, t) cannot cross B(0, D) for any t < 0, in fact otherwise the cor-
responding solution u(r) of (1.2) would be a G.S., contradicting Proposition
(3.10). Therefore it is bounded going backward in t and continuable for any
t < 0. Therefore it must have the critical point P = (Px, Py, 0) as α-limit

set. It follows that X̂q2(Q, t) ∈ R
2
+ for any t and that

lim
t→−∞

X̂q2(Q, t) = P and lim
t→∞

X̂q2(Q, t) = O

This concludes the proof of Theorem (2.4). �
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